Sign Language Recognition On Rwth Phoenix
평가 지표
Word Error Rate (WER)
평가 결과
이 벤치마크에서 각 모델의 성능 결과
비교 표
모델 이름 | Word Error Rate (WER) |
---|---|
007-democratically-finding-the-cause-of | 23.4 |
multimodal-locally-enhanced-transformer-for | 20.89 |
subunets-end-to-end-hand-shape-and-continuous | 40.7 |
context-matters-self-attention-for-sign | 29.7 |
visual-alignment-constraint-for-continuous | 22.1 |
signbert-hand-model-aware-self-supervised-pre | 20 |
a-deep-neural-framework-for-continuous-sign | 22.86 |
connectionist-temporal-fusion-for-sign | 37.8 |
c2slr-consistency-enhanced-continuous-sign | 20.4 |
two-stream-network-for-sign-language | 18.4 |
multi-stream-keypoint-attention-network-for | 22.1 |
continuous-sign-language-recognition-with | 19.4 |
stochastic-fine-grained-labeling-of-multi | 25.3 |
slowfast-network-for-continuous-sign-language | 18.3 |
dense-temporal-convolution-network-for-sign | 36.5 |
continuous-sign-language-recognition-through | 24.0 |
self-mutual-distillation-learning-for | 20.5 |
spatial-temporal-multi-cue-network-for | 20.7 |
tcnet-continuous-sign-language-recognition | 18.9 |
deep-radial-embedding-for-visual-sequence | 20.2 |