HyperAI초신경

Semantic Parsing On Wikitablequestions

평가 지표

Accuracy (Dev)
Accuracy (Test)

평가 결과

이 벤치마크에서 각 모델의 성능 결과

비교 표
모델 이름Accuracy (Dev)Accuracy (Test)
efficient-prompting-for-llm-based-generative/66.78
cabinet-content-relevance-based-noise/69.1
chain-of-table-evolving-tables-in-the/67.31
reastap-injecting-table-reasoning-skills59.758.7
tabsqlify-enhancing-reasoning-capabilities-of-64.7
syntqa-synergistic-table-based-question/71.6
binding-language-models-in-symbolic-languages65.064.6
tapas-weakly-supervised-table-parsing-via-pre/48.8
unifiedskg-unifying-and-multi-tasking50.6549.29
tabert-pretraining-for-joint-understanding-of52.251.8
normtab-improving-symbolic-reasoning-in-llms-61.20
learning-semantic-parsers-from-denotations43.744.5
large-language-models-are-versatile64.865.9
tapex-table-pre-training-via-learning-a57.057.5
accurate-and-regret-aware-numerical-problem/76.6
syntqa-synergistic-table-based-question-74.4
syntqa-synergistic-table-based-question--
advanced-reasoning-and-transformation-engine-80.8
lever-learning-to-verify-language-to-code64.665.8
omnitab-pretraining-with-natural-and-162.563.3
rethinking-tabular-data-understanding-with/73.6