HyperAIHyperAI초신경
홈뉴스연구 논문튜토리얼데이터셋백과사전SOTALLM 모델GPU 랭킹컨퍼런스
전체 검색
소개
한국어
HyperAIHyperAI초신경
  1. 홈
  2. SOTA
  3. 의미 대응
  4. Semantic Correspondence On Pf Pascal

Semantic Correspondence On Pf Pascal

평가 지표

PCK

평가 결과

이 벤치마크에서 각 모델의 성능 결과

모델 이름
PCK
Paper TitleRepository
HPF88.3Hyperpixel Flow: Semantic Correspondence with Multi-layer Neural Features
CHM91.6Convolutional Hough Matching Networks
SD+DINO (Supervised)93.6A Tale of Two Features: Stable Diffusion Complements DINO for Zero-Shot Semantic Correspondence
VAT92.3Cost Aggregation Is All You Need for Few-Shot Segmentation
DHPF90.7Learning to Compose Hypercolumns for Visual Correspondence
CATs++93.8CATs++: Boosting Cost Aggregation with Convolutions and Transformers
SCOT88.8Semantic Correspondence as an Optimal Transport Problem-
NC-Net-Neighbourhood Consensus Networks
GeoAware-SC (Supervised)95.1Telling Left from Right: Identifying Geometry-Aware Semantic Correspondence
GeoAware-SC (Zero-Shot)82.6Telling Left from Right: Identifying Geometry-Aware Semantic Correspondence
VAT (ECCV)92.3Cost Aggregation with 4D Convolutional Swin Transformer for Few-Shot Segmentation
GeoAware-SC (Supervised, AP-10K P.T.)95.7Telling Left from Right: Identifying Geometry-Aware Semantic Correspondence
CATs92.6CATs: Cost Aggregation Transformers for Visual Correspondence
ANCNet88.7Correspondence Networks with Adaptive Neighbourhood Consensus
0 of 14 row(s) selected.
HyperAI

학습, 이해, 실천, 커뮤니티와 함께 인공지능의 미래를 구축하다

한국어

소개

회사 소개데이터셋 도움말

제품

뉴스튜토리얼데이터셋백과사전

링크

TVM 한국어Apache TVMOpenBayes

© HyperAI초신경

TwitterBilibili