Rgb D Salient Object Detection On Stere
평가 지표
Average MAE
S-Measure
평가 결과
이 벤치마크에서 각 모델의 성능 결과
비교 표
모델 이름 | Average MAE | S-Measure |
---|---|---|
uc-net-uncertainty-inspired-rgb-d-saliency | 0.039 | 90.3 |
is-depth-really-necessary-for-salient-object | 0.037 | 91.0 |
cola-conditional-dropout-and-language-driven | 0.039 | 90.8 |
bts-net-bi-directional-transfer-and-selection | 0.038 | 91.5 |
uncertainty-inspired-rgb-d-saliency-detection | 0.039 | 89.8 |
jl-dcf-joint-learning-and-densely-cooperative | 0.042 | 90.5 |
bbs-net-rgb-d-salient-object-detection-with-a | 0.041 | 90.8 |
siamese-network-for-rgb-d-salient-object | 0.039 | 91.1 |
rethinking-rgb-d-salient-object-detection | 0.046 | 89.9 |
contrast-prior-and-fluid-pyramid-integration | 0.051 | 87.9 |
spsn-superpixel-prototype-sampling-network | 0.035 | 90.7 |
dformer-rethinking-rgbd-representation | 0.030 | 92.3 |
bilateral-attention-network-for-rgb-d-salient | 0.043 | 90.4 |
uncertainty-inspired-rgb-d-saliency-detection | 0.037 | 90.4 |