Collaborative Filtering On Netflix
평가 지표
AUC
PSP@10
Recall@10
Recall@100
nDCG@10
nDCG@100
평가 결과
이 벤치마크에서 각 모델의 성능 결과
모델 이름 | AUC | PSP@10 | Recall@10 | Recall@100 | nDCG@10 | nDCG@100 | Paper Title | Repository |
---|---|---|---|---|---|---|---|---|
∞-AE | 0.9728 | 0.0375 | 0.2969 | 0.5088 | 0.3059 | 0.3659 | Infinite Recommendation Networks: A Data-Centric Approach | |
RaCT | - | - | - | - | - | 0.392 | Towards Amortized Ranking-Critical Training for Collaborative Filtering | |
RecVAE | - | - | - | - | - | 0.394 | RecVAE: a New Variational Autoencoder for Top-N Recommendations with Implicit Feedback | |
H+Vamp Gated | - | - | - | - | - | 0.40861 | Enhancing VAEs for Collaborative Filtering: Flexible Priors & Gating Mechanisms | |
Mult-DAE | - | - | - | - | - | 0.380 | Variational Autoencoders for Collaborative Filtering | |
RATE-CSE | - | - | 0.2014 | - | - | - | Collaborative Similarity Embedding for Recommender Systems | |
EASE | - | - | - | - | - | 0.393 | Embarrassingly Shallow Autoencoders for Sparse Data | |
Mult-VAE PR | - | - | - | - | - | 0.386 | Variational Autoencoders for Collaborative Filtering | |
CML | - | - | 0.4612 | - | 0.2948 | - | Collaborative Metric Learning | |
LRML | - | - | 0.5371 | - | 0.3578 | - | Latent Relational Metric Learning via Memory-based Attention for Collaborative Ranking |
0 of 10 row(s) selected.