HyperAI초신경
홈
뉴스
최신 연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
한국어
HyperAI초신경
Toggle sidebar
전체 사이트 검색...
⌘
K
홈
SOTA
Recommendation Systems
Collaborative Filtering On Movielens 100K
Collaborative Filtering On Movielens 100K
평가 지표
Precision
RMSE (u1 Splits)
Recall
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
Precision
RMSE (u1 Splits)
Recall
Paper Title
Repository
GHRS
0.771
0.887
0.799
GHRS: Graph-based Hybrid Recommendation System with Application to Movie Recommendation
Self-Supervised Exchangeable Model
-
0.91
-
Deep Models of Interactions Across Sets
IGMC
-
0.905
-
Inductive Matrix Completion Based on Graph Neural Networks
GMC
-
0.996
-
Matrix Completion on Graphs
GLocal-K
-
0.8889
-
GLocal-K: Global and Local Kernels for Recommender Systems
sRGCNN
-
0.929
-
Geometric Matrix Completion with Recurrent Multi-Graph Neural Networks
FedGNN
-
-
-
FedGNN: Federated Graph Neural Network for Privacy-Preserving Recommendation
-
GraphRec + Feat
-
0.897
-
Attribute-aware non-linear co-embeddings of graph features
GC-MC
-
0.905
-
Graph Convolutional Matrix Completion
Factorized EAE
-
0.920
-
Deep Models of Interactions Across Sets
GraphRec
-
0.904
-
Attribute-aware non-linear co-embeddings of graph features
GRALS
-
0.945
-
Collaborative Filtering with Graph Information: Consistency and Scalable Methods
FedPerGNN
-
-
-
A federated graph neural network framework for privacy-preserving personalization
GRAEM / KPMF
-
0.9174
-
Scalable Probabilistic Matrix Factorization with Graph-Based Priors
GC-MC
-
0.910
-
Graph Convolutional Matrix Completion
MG-GAT
-
0.890
-
Interpretable Recommender System With Heterogeneous Information: A Geometric Deep Learning Perspective
WMLFF
-
0.928
-
Weighted Multi-Level Feature Factorization for App ads CTR and installation prediction
0 of 17 row(s) selected.
Previous
Next