HyperAI초신경
홈
뉴스
최신 연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
한국어
HyperAI초신경
Toggle sidebar
전체 사이트 검색...
⌘
K
홈
SOTA
Real Time Semantic Segmentation
Real Time Semantic Segmentation On Cityscapes
Real Time Semantic Segmentation On Cityscapes
평가 지표
Frame (fps)
mIoU
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
Frame (fps)
mIoU
Paper Title
Repository
STDC2-75
97.0(1080Ti)
76.8%
Rethinking BiSeNet For Real-time Semantic Segmentation
Template-Based-NAS-arch0
19
67.7%
Template-Based Automatic Search of Compact Semantic Segmentation Architectures
DeepLab
0.25
63.1%
Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs
EDANet
108.7 (1080Ti)
67.3
Efficient Dense Modules of Asymmetric Convolution for Real-Time Semantic Segmentation
DDRNet-23-slim
101.6(2080Ti)
77.4%
Deep Dual-resolution Networks for Real-time and Accurate Semantic Segmentation of Road Scenes
U-HarDNet-70
-
-
HarDNet: A Low Memory Traffic Network
FasterSeg
163.9
71.5%
-
-
ICNet
30.3
70.6%
ICNet for Real-Time Semantic Segmentation on High-Resolution Images
PP-LiteSeg-B1
195.3(1080Ti)
73.9%
PP-LiteSeg: A Superior Real-Time Semantic Segmentation Model
PP-LiteSeg-B2
102.6(1080Ti)
77.5%
PP-LiteSeg: A Superior Real-Time Semantic Segmentation Model
ShelfNet18
59.2
74.8%
ShelfNet for Fast Semantic Segmentation
PIDNet-L
31.1(3090)
80.6%
PIDNet: A Real-time Semantic Segmentation Network Inspired by PID Controllers
ESNet
63
70.7%
ESNet: An Efficient Symmetric Network for Real-time Semantic Segmentation
ENet
76.9
58.3%
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation
ENet + Lovász-Softmax
76.9
63.1%
The Lovász-Softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks
TD4-BISE18
47.6 (Titan X)
74.9%
Temporally Distributed Networks for Fast Video Semantic Segmentation
BiSeNet V2
156
72.6%
BiSeNet V2: Bilateral Network with Guided Aggregation for Real-time Semantic Segmentation
RegSeg (no ImageNet pretraining)
30
78.3%
Rethinking Dilated Convolution for Real-time Semantic Segmentation
PP-LiteSeg-T1
273.6(1080Ti)
72.0%
PP-LiteSeg: A Superior Real-Time Semantic Segmentation Model
HyperSeg-M
36.9
75.8%
HyperSeg: Patch-wise Hypernetwork for Real-time Semantic Segmentation
0 of 39 row(s) selected.
Previous
Next