HyperAI
HyperAI초신경
홈
플랫폼
문서
뉴스
연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
한국어
HyperAI
HyperAI초신경
Toggle sidebar
전체 사이트 검색...
⌘
K
Command Palette
Search for a command to run...
홈
SOTA
질문 응답
Question Answering On Squad20 Dev
Question Answering On Squad20 Dev
평가 지표
EM
F1
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
EM
F1
Paper Title
Repository
XLNet (single model)
87.9
90.6
XLNet: Generalized Autoregressive Pretraining for Language Understanding
XLNet+DSC
87.65
89.51
Dice Loss for Data-imbalanced NLP Tasks
RoBERTa (no data aug)
86.5
89.4
RoBERTa: A Robustly Optimized BERT Pretraining Approach
ALBERT xxlarge
85.1
88.1
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations
SG-Net
85.1
87.9
SG-Net: Syntax-Guided Machine Reading Comprehension
SpanBERT
-
86.8
SpanBERT: Improving Pre-training by Representing and Predicting Spans
ALBERT xlarge
83.1
85.9
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations
SemBERT large
80.9
83.6
Semantics-aware BERT for Language Understanding
ALBERT large
79.0
82.1
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations
ALBERT base
76.1
79.1
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations
RMR + ELMo (Model-III)
72.3
74.8
Read + Verify: Machine Reading Comprehension with Unanswerable Questions
-
U-Net
70.3
74.0
U-Net: Machine Reading Comprehension with Unanswerable Questions
TinyBERT-6 67M
69.9
73.4
TinyBERT: Distilling BERT for Natural Language Understanding
0 of 13 row(s) selected.
Previous
Next