HyperAIHyperAI초신경
홈뉴스연구 논문튜토리얼데이터셋백과사전SOTALLM 모델GPU 랭킹컨퍼런스
전체 검색
소개
한국어
HyperAIHyperAI초신경
  1. 홈
  2. SOTA
  3. 질문 응답
  4. Question Answering On Drop Test

Question Answering On Drop Test

평가 지표

F1

평가 결과

이 벤치마크에서 각 모델의 성능 결과

모델 이름
F1
Paper TitleRepository
QDGAT (ensemble)88.38Question Directed Graph Attention Network for Numerical Reasoning over Text-
PaLM 2 (few-shot)85.0PaLM 2 Technical Report
GPT-3 175B (few-shot, k=32)36.5Language Models are Few-Shot Learners
GPT-4 (few-shot, k=3)80.9GPT-4 Technical Report
NeRd81.71Neural Symbolic Reader: Scalable Integration of Distributed and Symbolic Representations for Reading Comprehension-
NumNet67.97NumNet: Machine Reading Comprehension with Numerical Reasoning
Orca 2-7B60.26Orca 2: Teaching Small Language Models How to Reason-
GPT 3.5 (few-shot, k=3)64.1GPT-4 Technical Report
Orca 2-13B57.97Orca 2: Teaching Small Language Models How to Reason-
POET87.6Reasoning Like Program Executors
BERT32.7DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs
BERT+Calculator (ensemble)81.78Giving BERT a Calculator: Finding Operations and Arguments with Reading Comprehension-
NAQA Net47.01DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs
GenBERT (+ND+TD)72.4Injecting Numerical Reasoning Skills into Language Models
MTMSN Large79.88A Multi-Type Multi-Span Network for Reading Comprehension that Requires Discrete Reasoning
TASE-BERT80.7A Simple and Effective Model for Answering Multi-span Questions
0 of 16 row(s) selected.
HyperAI

학습, 이해, 실천, 커뮤니티와 함께 인공지능의 미래를 구축하다

한국어

소개

회사 소개데이터셋 도움말

제품

뉴스튜토리얼데이터셋백과사전

링크

TVM 한국어Apache TVMOpenBayes

© HyperAI초신경

TwitterBilibili