HyperAI
HyperAI초신경
홈
플랫폼
문서
뉴스
연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
서비스 약관
개인정보 처리방침
한국어
HyperAI
HyperAI초신경
Toggle Sidebar
전체 사이트 검색...
⌘
K
Command Palette
Search for a command to run...
플랫폼
홈
SOTA
프롬프트 엔지니어링
Prompt Engineering On Stanford Cars 1
Prompt Engineering On Stanford Cars 1
평가 지표
Harmonic mean
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
Harmonic mean
Paper Title
PromptKD
83.13
PromptKD: Unsupervised Prompt Distillation for Vision-Language Models
MMRL
78.06
MMRL: Multi-Modal Representation Learning for Vision-Language Models
DePT
77.79
DePT: Decoupled Prompt Tuning
ProMetaR
76.72
Prompt Learning via Meta-Regularization
PromptSRC
76.58
Self-regulating Prompts: Foundational Model Adaptation without Forgetting
CoPrompt
75.66
Consistency-guided Prompt Learning for Vision-Language Models
HPT++
75.59
HPT++: Hierarchically Prompting Vision-Language Models with Multi-Granularity Knowledge Generation and Improved Structure Modeling
HPT
75.57
Learning Hierarchical Prompt with Structured Linguistic Knowledge for Vision-Language Models
MetaPrompt
75.48
Learning Domain Invariant Prompt for Vision-Language Models
RPO
74.69
Read-only Prompt Optimization for Vision-Language Few-shot Learning
MaPLe
73.47
MaPLe: Multi-modal Prompt Learning
CoCoOp
72.01
Conditional Prompt Learning for Vision-Language Models
CLIP
68.65
Learning Transferable Visual Models From Natural Language Supervision
0 of 13 row(s) selected.
Previous
Next