HyperAI
HyperAI초신경
홈
뉴스
최신 연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
한국어
HyperAI
HyperAI초신경
Toggle sidebar
전체 사이트 검색...
⌘
K
홈
SOTA
프롬프트 엔지니어링
Prompt Engineering On Oxford 102 Flower
Prompt Engineering On Oxford 102 Flower
평가 지표
Harmonic mean
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
Harmonic mean
Paper Title
Repository
CLIP
74.83
Learning Transferable Visual Models From Natural Language Supervision
-
PromptSRC
85.95
Self-regulating Prompts: Foundational Model Adaptation without Forgetting
-
CoPrompt
85.71
Consistency-guided Prompt Learning for Vision-Language Models
-
HPT
87.16
Learning Hierarchical Prompt with Structured Linguistic Knowledge for Vision-Language Models
-
MetaPrompt
84.52
Learning Domain Invariant Prompt for Vision-Language Models
-
ProMetaR
86.70
Prompt Learning via Meta-Regularization
-
DePT
86.46
DePT: Decoupled Prompt Tuning
-
CoCoOp
81.71
Conditional Prompt Learning for Vision-Language Models
-
RPO
84.50
Read-only Prompt Optimization for Vision-Language Few-shot Learning
-
HPT++
85.85
HPT++: Hierarchically Prompting Vision-Language Models with Multi-Granularity Knowledge Generation and Improved Structure Modeling
-
PromptKD
90.24
PromptKD: Unsupervised Prompt Distillation for Vision-Language Models
-
MaPLe
82.56
MaPLe: Multi-modal Prompt Learning
-
MMRL
86.78
MMRL: Multi-Modal Representation Learning for Vision-Language Models
-
0 of 13 row(s) selected.
Previous
Next
Prompt Engineering On Oxford 102 Flower | SOTA | HyperAI초신경