HyperAIHyperAI초신경
홈뉴스연구 논문튜토리얼데이터셋백과사전SOTALLM 모델GPU 랭킹컨퍼런스
전체 검색
소개
한국어
HyperAIHyperAI초신경
  1. 홈
  2. SOTA
  3. 프롬프트 엔지니어링
  4. Prompt Engineering On Imagenet S

Prompt Engineering On Imagenet S

평가 지표

Top-1 accuracy %

평가 결과

이 벤치마크에서 각 모델의 성능 결과

모델 이름
Top-1 accuracy %
Paper TitleRepository
HPT++49.28HPT++: Hierarchically Prompting Vision-Language Models with Multi-Granularity Knowledge Generation and Improved Structure Modeling
CoCoOp48.75Conditional Prompt Learning for Vision-Language Models
MMRL49.17MMRL: Multi-Modal Representation Learning for Vision-Language Models
CoPrompt49.43Consistency-guided Prompt Learning for Vision-Language Models
POMP49.8Prompt Pre-Training with Twenty-Thousand Classes for Open-Vocabulary Visual Recognition
MaPLe49.15MaPLe: Multi-modal Prompt Learning
CLIP46.15Learning Transferable Visual Models From Natural Language Supervision
PromptSRC49.55Self-regulating Prompts: Foundational Model Adaptation without Forgetting
HPT49.36Learning Hierarchical Prompt with Structured Linguistic Knowledge for Vision-Language Models
0 of 9 row(s) selected.
HyperAI

학습, 이해, 실천, 커뮤니티와 함께 인공지능의 미래를 구축하다

한국어

소개

회사 소개데이터셋 도움말

제품

뉴스튜토리얼데이터셋백과사전

링크

TVM 한국어Apache TVMOpenBayes

© HyperAI초신경

TwitterBilibili