HyperAIHyperAI초신경
홈뉴스연구 논문튜토리얼데이터셋백과사전SOTALLM 모델GPU 랭킹컨퍼런스
전체 검색
소개
한국어
HyperAIHyperAI초신경
  1. 홈
  2. SOTA
  3. 프롬프트 엔지니어링
  4. Prompt Engineering On Imagenet R

Prompt Engineering On Imagenet R

평가 지표

Top-1 accuracy %

평가 결과

이 벤치마크에서 각 모델의 성능 결과

모델 이름
Top-1 accuracy %
Paper TitleRepository
MaPLe76.98MaPLe: Multi-modal Prompt Learning
POMP77.9Prompt Pre-Training with Twenty-Thousand Classes for Open-Vocabulary Visual Recognition
HPT77.38Learning Hierarchical Prompt with Structured Linguistic Knowledge for Vision-Language Models
CoPrompt77.51Consistency-guided Prompt Learning for Vision-Language Models
PromptSRC77.80Self-regulating Prompts: Foundational Model Adaptation without Forgetting
CoCoOP76.18Conditional Prompt Learning for Vision-Language Models
CLIP73.96Learning Transferable Visual Models From Natural Language Supervision
HPT++77.52HPT++: Hierarchically Prompting Vision-Language Models with Multi-Granularity Knowledge Generation and Improved Structure Modeling
MMRL77.53MMRL: Multi-Modal Representation Learning for Vision-Language Models
0 of 9 row(s) selected.
HyperAI

학습, 이해, 실천, 커뮤니티와 함께 인공지능의 미래를 구축하다

한국어

소개

회사 소개데이터셋 도움말

제품

뉴스튜토리얼데이터셋백과사전

링크

TVM 한국어Apache TVMOpenBayes

© HyperAI초신경

TwitterBilibili