HyperAI
HyperAI초신경
홈
플랫폼
문서
뉴스
연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
서비스 약관
개인정보 처리방침
한국어
HyperAI
HyperAI초신경
Toggle Sidebar
전체 사이트 검색...
⌘
K
Command Palette
Search for a command to run...
플랫폼
홈
SOTA
프롬프트 엔지니어링
Prompt Engineering On Food 101
Prompt Engineering On Food 101
평가 지표
Harmonic mean
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
Harmonic mean
Paper Title
PromptKD
93.05
PromptKD: Unsupervised Prompt Distillation for Vision-Language Models
CoPrompt
91.40
Consistency-guided Prompt Learning for Vision-Language Models
MaPLe
91.38
MaPLe: Multi-modal Prompt Learning
ProMetaR
91.34
Prompt Learning via Meta-Regularization
MetaPrompt
91.29
Learning Domain Invariant Prompt for Vision-Language Models
DePT
91.22
DePT: Decoupled Prompt Tuning
PromptSRC
91.10
Self-regulating Prompts: Foundational Model Adaptation without Forgetting
HPT++
91.09
HPT++: Hierarchically Prompting Vision-Language Models with Multi-Granularity Knowledge Generation and Improved Structure Modeling
MMRL
91.03
MMRL: Multi-Modal Representation Learning for Vision-Language Models
HPT
91.01
Learning Hierarchical Prompt with Structured Linguistic Knowledge for Vision-Language Models
CoCoOp
90.99
Conditional Prompt Learning for Vision-Language Models
RPO
90.58
Read-only Prompt Optimization for Vision-Language Few-shot Learning
0 of 12 row(s) selected.
Previous
Next
Prompt Engineering On Food 101 | SOTA | HyperAI초신경