HyperAIHyperAI초신경
홈뉴스연구 논문튜토리얼데이터셋백과사전SOTALLM 모델GPU 랭킹컨퍼런스
전체 검색
소개
한국어
HyperAIHyperAI초신경
  1. 홈
  2. SOTA
  3. 프롬프트 엔지니어링
  4. Prompt Engineering On Caltech 101

Prompt Engineering On Caltech 101

평가 지표

Harmonic mean

평가 결과

이 벤치마크에서 각 모델의 성능 결과

모델 이름
Harmonic mean
Paper TitleRepository
ProMetaR96.16Prompt Learning via Meta-Regularization
HPT++96.96HPT++: Hierarchically Prompting Vision-Language Models with Multi-Granularity Knowledge Generation and Improved Structure Modeling
MaPLe96.02MaPLe: Multi-modal Prompt Learning
CoCoOp95.84Conditional Prompt Learning for Vision-Language Models
PromptSRC96.02Self-regulating Prompts: Foundational Model Adaptation without Forgetting
HPT96.65Learning Hierarchical Prompt with Structured Linguistic Knowledge for Vision-Language Models
CLIP95.40Learning Transferable Visual Models From Natural Language Supervision
CoPrompt96.55Consistency-guided Prompt Learning for Vision-Language Models
MetaPrompt96.32Learning Domain Invariant Prompt for Vision-Language Models
RPO96.03Read-only Prompt Optimization for Vision-Language Few-shot Learning
PromptKD97.77PromptKD: Unsupervised Prompt Distillation for Vision-Language Models
MMRL96.68MMRL: Multi-Modal Representation Learning for Vision-Language Models
DePT96.28DePT: Decoupled Prompt Tuning
0 of 13 row(s) selected.
HyperAI

학습, 이해, 실천, 커뮤니티와 함께 인공지능의 미래를 구축하다

한국어

소개

회사 소개데이터셋 도움말

제품

뉴스튜토리얼데이터셋백과사전

링크

TVM 한국어Apache TVMOpenBayes

© HyperAI초신경

TwitterBilibili