HyperAI
HyperAI초신경
홈
뉴스
최신 연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
한국어
HyperAI
HyperAI초신경
Toggle sidebar
전체 사이트 검색...
⌘
K
홈
SOTA
프롬프트 엔지니어링
Prompt Engineering On Caltech 101
Prompt Engineering On Caltech 101
평가 지표
Harmonic mean
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
Harmonic mean
Paper Title
Repository
ProMetaR
96.16
Prompt Learning via Meta-Regularization
-
HPT++
96.96
HPT++: Hierarchically Prompting Vision-Language Models with Multi-Granularity Knowledge Generation and Improved Structure Modeling
-
MaPLe
96.02
MaPLe: Multi-modal Prompt Learning
-
CoCoOp
95.84
Conditional Prompt Learning for Vision-Language Models
-
PromptSRC
96.02
Self-regulating Prompts: Foundational Model Adaptation without Forgetting
-
HPT
96.65
Learning Hierarchical Prompt with Structured Linguistic Knowledge for Vision-Language Models
-
CLIP
95.40
Learning Transferable Visual Models From Natural Language Supervision
-
CoPrompt
96.55
Consistency-guided Prompt Learning for Vision-Language Models
-
MetaPrompt
96.32
Learning Domain Invariant Prompt for Vision-Language Models
-
RPO
96.03
Read-only Prompt Optimization for Vision-Language Few-shot Learning
-
PromptKD
97.77
PromptKD: Unsupervised Prompt Distillation for Vision-Language Models
-
MMRL
96.68
MMRL: Multi-Modal Representation Learning for Vision-Language Models
-
DePT
96.28
DePT: Decoupled Prompt Tuning
-
0 of 13 row(s) selected.
Previous
Next
Prompt Engineering On Caltech 101 | SOTA | HyperAI초신경