HyperAI
HyperAI초신경
홈
플랫폼
문서
뉴스
연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
서비스 약관
개인정보 처리방침
한국어
HyperAI
HyperAI초신경
Toggle Sidebar
전체 사이트 검색...
⌘
K
Command Palette
Search for a command to run...
플랫폼
홈
SOTA
포인트 클라우드 등록
Point Cloud Registration On Kitti Trained On
Point Cloud Registration On Kitti Trained On
평가 지표
Success Rate
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
Success Rate
Paper Title
GeDi
98.92
Learning general and distinctive 3D local deep descriptors for point cloud registration
FCGF+SC2-PCR
97.66
SC2-PCR: A Second Order Spatial Compatibility for Efficient and Robust Point Cloud Registration
FCGF+PointDSC
96.76
PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency
Exhaustive Grid Search
94.95
Addressing the generalization of 3D registration methods with a featureless baseline and an unbiased benchmark
FPFH+PointDSC
94.05
PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency
DIP
93.51
Distinctive 3D local deep descriptors
Greedy Grid Search
90.27
Challenging the Universal Representation of Deep Models for 3D Point Cloud Registration
YOHO-C
82.16
You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors
YOHO-O
81.44
You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors
SpinNet
81.44
SpinNet: Learning a General Surface Descriptor for 3D Point Cloud Registration
GeoTransformer
67.93
GeoTransformer: Fast and Robust Point Cloud Registration with Geometric Transformer
Predator
41.20
PREDATOR: Registration of 3D Point Clouds with Low Overlap
D3Feat-pred
36.76
D3Feat: Joint Learning of Dense Detection and Description of 3D Local Features
FCGF
24.19
Fully Convolutional Geometric Features
0 of 14 row(s) selected.
Previous
Next