Point Cloud Registration On Eth Trained On
평가 지표
Feature Matching Recall
평가 결과
이 벤치마크에서 각 모델의 성능 결과
비교 표
모델 이름 | Feature Matching Recall |
---|---|
learning-compact-geometric-features | 0.202 |
distinctive-3d-local-deep-descriptors | 0.928 |
generalisable-and-distinctive-3d-local-deep | 0.982 |
fast-point-feature-histograms-fpfh-for-3d | 0.221 |
fully-convolutional-geometric-features | 0.161 |
d3feat-joint-learning-of-dense-detection-and | 0.563 |
the-perfect-match-3d-point-cloud-matching | 0.790 |
challenging-the-universal-representation-of | 0.784 |
3dmatch-learning-local-geometric-descriptors | 0.169 |
addressing-the-generalization-of-3d | - |
sc2-pcr-a-second-order-spatial-compatibility | - |
you-only-hypothesize-once-point-cloud | - |
pointdsc-robust-point-cloud-registration | - |
sc2-pcr-a-second-order-spatial-compatibility | - |
geotransformer-fast-and-robust-point-cloud | - |
end-to-end-learning-local-multi-view | 0.616 |
pointdsc-robust-point-cloud-registration | - |
you-only-hypothesize-once-point-cloud | - |
go-icp-a-globally-optimal-solution-to-3d-icp | - |
spinnet-learning-a-general-surface-descriptor | 0.928 |