HyperAI
HyperAI초신경
홈
플랫폼
문서
뉴스
연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
서비스 약관
개인정보 처리방침
한국어
HyperAI
HyperAI초신경
Toggle Sidebar
전체 사이트 검색...
⌘
K
Command Palette
Search for a command to run...
플랫폼
홈
SOTA
포인트 클라우드 등록
Point Cloud Registration On 3Dmatch Benchmark
Point Cloud Registration On 3Dmatch Benchmark
평가 지표
Feature Matching Recall
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
Feature Matching Recall
Paper Title
IMFNet
98.6
IMFNet: Interpretable Multimodal Fusion for Point Cloud Registration
MS-SVConv
98.4
3D Point Cloud Registration with Multi-Scale Architecture and Unsupervised Transfer Learning
GeDi (no code published as of May 27 2021)
97.9
Learning general and distinctive 3D local deep descriptors for point cloud registration
SpinNet (no code published as of Dec 15 2020)
97.6
SpinNet: Learning a General Surface Descriptor for 3D Point Cloud Registration
LMVD
97.5
End-to-End Learning Local Multi-view Descriptors for 3D Point Clouds
DIP + Point-TnT
96.8
Points to Patches: Enabling the Use of Self-Attention for 3D Shape Recognition
D3Feat-Pred
95.8
D3Feat: Joint Learning of Dense Detection and Description of 3D Local Features
D3Feat-rand
95.3
D3Feat: Joint Learning of Dense Detection and Description of 3D Local Features
DIP
94.8
Distinctive 3D local deep descriptors
3DSmoothNet
94.7
The Perfect Match: 3D Point Cloud Matching with Smoothed Densities
FCGF + RANSAC
85
Fully Convolutional Geometric Features
PPF-FoldNet
71.8
PPF-FoldNet: Unsupervised Learning of Rotation Invariant 3D Local Descriptors
3DMatch + RANSAC
66.8
3DMatch: Learning Local Geometric Descriptors from RGB-D Reconstructions
PPFNet
62.3
PPFNet: Global Context Aware Local Features for Robust 3D Point Matching
FPFH + RANSAC
44.2
Fast Point Feature Histograms (FPFH) for 3D Registration
0 of 15 row(s) selected.
Previous
Next