HyperAI초신경
홈
뉴스
최신 연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
한국어
HyperAI초신경
Toggle sidebar
전체 사이트 검색...
⌘
K
홈
SOTA
Photo Geolocation Estimation
Photo Geolocation Estimation On Im2Gps3K
Photo Geolocation Estimation On Im2Gps3K
평가 지표
City level (25 km)
Continent level (2500 km)
Country level (750 km)
Region level (200 km)
Street level (1 km)
Training Images
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
City level (25 km)
Continent level (2500 km)
Country level (750 km)
Region level (200 km)
Street level (1 km)
Training Images
Paper Title
Repository
Translocator
31.1
80.1
58.9
46.7
11.8
4.7M
Where in the World is this Image? Transformer-based Geo-localization in the Wild
PIGEOTTO
36.7
85.3
72.4
53.8
11.3
4.5M
PIGEON: Predicting Image Geolocations
GeoCLIP
34.5
83.8
69.7
50.7
14.1
4.7M
GeoCLIP: Clip-Inspired Alignment between Locations and Images for Effective Worldwide Geo-localization
GeoDecoder
33.5
76.1
61.0
45.9
12.8
4.7M
Where We Are and What We're Looking At: Query Based Worldwide Image Geo-localization Using Hierarchies and Scenes
-
StreetCLIP (Zero-Shot)
22.4
80.4
61.3
37.4
-
1.1M
Learning Generalized Zero-Shot Learners for Open-Domain Image Geolocalization
Im2GPS (kNN, sigma = 4)
19.4
55.9
38.9
26.9
7.2
6M
Revisiting IM2GPS in the Deep Learning Era
-
ISNs (M, f*, S3)
28.0
66.0
49.7
36.6
10.5
4.7M
Geolocation Estimation of Photos using a Hierarchical Model and Scene Classification
-
base (M, f*)
27.0
66.0
49.2
35.6
9.7
4.7M
Geolocation Estimation of Photos using a Hierarchical Model and Scene Classification
-
base (L, m)
24.9
65.8
48.8
34.0
8.3
4.7M
Geolocation Estimation of Photos using a Hierarchical Model and Scene Classification
-
Im2GPS ([M] 7011C)
14.2
52.7
33.5
21.3
3.7
6M
Revisiting IM2GPS in the Deep Learning Era
-
CPlaNet (1-5, PlaNet)
26.5
64.4
48.6
34.6
10.2
30.3M
CPlaNet: Enhancing Image Geolocalization by Combinatorial Partitioning of Maps
-
Im2GPS ([L] 7011C)
14.8
52.4
32.6
21.4
4.0
6M
Revisiting IM2GPS in the Deep Learning Era
-
0 of 12 row(s) selected.
Previous
Next