Outlier Detection On Ecg5000
평가 지표
Accuracy
평가 결과
이 벤치마크에서 각 모델의 성능 결과
모델 이름 | Accuracy | Paper Title | Repository |
---|---|---|---|
VRAE+SVM | 0.9843 | Learning Representations from Healthcare Time Series Data for Unsupervised Anomaly Detection | - |
GENDIS | 0.94 | GENDIS: GENetic DIscovery of Shapelets | |
F-t ALSTM-FCN | 0.9496 | LSTM Fully Convolutional Networks for Time Series Classification |
0 of 3 row(s) selected.