HyperAI초신경

Optical Flow Estimation On Sintel Final

평가 지표

Average End-Point Error

평가 결과

이 벤치마크에서 각 모델의 성능 결과

비교 표
모델 이름Average End-Point Error
optical-flow-estimation-using-a-spatial8.36
deep-equilibrium-optical-flow-estimation2.886
selflow-self-supervised-learning-of-optical4.26
fastflownet-a-lightweight-network-for-fast6.08
fdflownet-fast-optical-flow-estimation-using5.11
recurrent-partial-kernel-network-for2.657
optical-flow-in-mostly-rigid-scenes5.38
maskflownet-asymmetric-feature-matching-with4.17
unifying-flow-stereo-and-depth-estimation2.37
improved-cross-view-completion-pre-training2.436
volumetric-correspondence-networks-for4.40
iterative-residual-refinement-for-joint4.579
perceiver-io-a-general-architecture-for2.42
rethinking-raft-for-efficient-optical-flow2.60
unsupervised-optical-flow-using-cost-function5.8
global-matching-with-overlapping-attention2.648
scopeflow-dynamic-scene-scoping-for-optical4.098
learning-to-estimate-hidden-motions-with2.470
continual-occlusions-and-optical-flow4.52
a-lightweight-optical-flow-cnn-revisiting4.69
liteflownet-a-lightweight-convolutional5.38
raft-recurrent-all-pairs-field-transforms-for2.855
dpflow-adaptive-optical-flow-estimation-with-11.975
liteflownet3-resolving-correspondence4.45
maskflownet-asymmetric-feature-matching-with4.38
rapidflow-recurrent-adaptable-pyramids-with3.56
liteflownet3-resolving-correspondence4.53