Open Vocabulary Semantic Segmentation On 1
평가 지표
mIoU
평가 결과
이 벤치마크에서 각 모델의 성능 결과
비교 표
모델 이름 | mIoU |
---|---|
learning-to-generate-text-grounded-mask-for | 33.9 |
open-vocabulary-semantic-segmentation-with-2 | 50.1 |
tagalign-improving-vision-language-alignment | 37.6 |
mask-adapter-the-devil-is-in-the-masks-for | 60.4 |
convolutions-die-hard-open-vocabulary-1 | 58.4 |
collaborative-vision-text-representation | 59.4 |
learning-mask-aware-clip-representations-for | 58.5 |
cat-seg-cost-aggregation-for-open-vocabulary | 63.3 |
open-vocabulary-semantic-segmentation-with | 55.7 |
sed-a-simple-encoder-decoder-for-open | 60.6 |
in-defense-of-lazy-visual-grounding-for-open | 34.7 |
hyperseg-towards-universal-visual | 64.6 |
ttd-text-tag-self-distillation-enhancing | 37.4 |
2112-14757 | 47.7 |
silc-improving-vision-language-pretraining | 63.5 |
open-vocabulary-panoptic-segmentation-with | 45.9 |
open-vocabulary-semantic-segmentation-with-4 | 60.2 |
clip-surgery-for-better-explainability-with | 29.3 |
maskclip-a-mask-based-clip-fine-tuning | 62.5 |
open-vocabulary-segmentation-with-semantic | 59.3 |
ttd-text-tag-self-distillation-enhancing | 31.0 |
clipself-vision-transformer-distills-itself | 62.3 |
open-vocabulary-panoptic-segmentation-with-1 | 57.3 |