Object Detection On Ua Detrac
평가 지표
mAP
평가 결과
이 벤치마크에서 각 모델의 성능 결과
모델 이름 | mAP | Paper Title | Repository |
---|---|---|---|
CenterNet | 83.48 | Objects as Points | |
Faster R-CNN | 58.45 | Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks | |
FFAVOD-SpotNet with U-Net | 88.10 | FFAVOD: Feature Fusion Architecture for Video Object Detection | |
YOLOv2 | 57.72 | YOLO9000: Better, Faster, Stronger | |
3D-DETNet | 53.30 | 3D-DETNet: a Single Stage Video-Based Vehicle Detector | - |
VSTAM | 90.39 | Video Sparse Transformer With Attention-Guided Memory for Video Object Detection | |
R-FCN | 69.87 | R-FCN: Object Detection via Region-based Fully Convolutional Networks | |
SpotNet | 86.8 | SpotNet: Self-Attention Multi-Task Network for Object Detection | |
RN-VID | 70.57 | RN-VID: A Feature Fusion Architecture for Video Object Detection |
0 of 9 row(s) selected.