HyperAI
HyperAI초신경
홈
플랫폼
문서
뉴스
연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
서비스 약관
개인정보 처리방침
한국어
HyperAI
HyperAI초신경
Toggle Sidebar
전체 사이트 검색...
⌘
K
Command Palette
Search for a command to run...
플랫폼
홈
SOTA
노드 분류
Node Classification On Wisconsin 60 20 20
Node Classification On Wisconsin 60 20 20
평가 지표
1:1 Accuracy
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
1:1 Accuracy
Paper Title
ACM-GCN++
97.5 ± 1.25
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN++
97.13 ± 1.68
Revisiting Heterophily For Graph Neural Networks
ACMII-Snowball-3
97.00 ± 2.63
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN+
96.75 ± 1.79
Revisiting Heterophily For Graph Neural Networks
ACMII-Snowball-2
96.63 ± 2.24
Revisiting Heterophily For Graph Neural Networks
ACM-Snowball-3
96.62 ± 1.86
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN
96.62 ± 2.44
Revisiting Heterophily For Graph Neural Networks
ACM-GCN+
96.5 ± 2.08
Revisiting Heterophily For Graph Neural Networks
ACM-Snowball-2
96.38 ± 2.59
Revisiting Heterophily For Graph Neural Networks
ACM-GCN
95.75 ± 2.03
Revisiting Heterophily For Graph Neural Networks
ACM-GCNII
94.63 ± 2.96
Revisiting Heterophily For Graph Neural Networks
ACM-GCNII*
94.37 ± 2.81
Revisiting Heterophily For Graph Neural Networks
ACM-SGC-2
94.00 ± 2.61
Revisiting Heterophily For Graph Neural Networks
MLP-2
93.87 ± 3.33
Revisiting Heterophily For Graph Neural Networks
GPRGNN
93.75 ± 2.37
Adaptive Universal Generalized PageRank Graph Neural Network
ACM-SGC-1
93.25 ± 2.92
Revisiting Heterophily For Graph Neural Networks
APPNP
92.00 ± 3.59
Predict then Propagate: Graph Neural Networks meet Personalized PageRank
FAGCN
89.75 ± 6.37
Beyond Low-frequency Information in Graph Convolutional Networks
GCNII*
89.12 ± 3.06
Simple and Deep Graph Convolutional Networks
H2GCN
87.5 ± 1.77
Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs
0 of 35 row(s) selected.
Previous
Next
Node Classification On Wisconsin 60 20 20 | SOTA | HyperAI초신경