HyperAI
HyperAI초신경
홈
플랫폼
문서
뉴스
연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
서비스 약관
개인정보 처리방침
한국어
HyperAI
HyperAI초신경
Toggle Sidebar
전체 사이트 검색...
⌘
K
Command Palette
Search for a command to run...
플랫폼
홈
SOTA
노드 분류
Node Classification On Texas 60 20 20 Random
Node Classification On Texas 60 20 20 Random
평가 지표
1:1 Accuracy
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
1:1 Accuracy
Paper Title
ACM-GCN++
96.56 ± 2
Revisiting Heterophily For Graph Neural Networks
ACM-Snowball-2
95.74 ± 2.22
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN+
95.41 ± 2.82
Revisiting Heterophily For Graph Neural Networks
ACMII-Snowball-2
95.25 ± 1.55
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN
95.08 ± 2.07
Revisiting Heterophily For Graph Neural Networks
ACM-GCN+
94.92 ± 2.79
Revisiting Heterophily For Graph Neural Networks
ACMII-Snowball-3
94.75 ± 3.09
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN++
94.75 ± 2.91
Revisiting Heterophily For Graph Neural Networks
ACM-Snowball-3
94.75 ± 2.41
Revisiting Heterophily For Graph Neural Networks
NFGNN
94.03±0.82
Node-oriented Spectral Filtering for Graph Neural Networks
ACM-SGC-1
93.61 ± 1.55
Revisiting Heterophily For Graph Neural Networks
ACM-SGC-2
93.44 ± 2.54
Revisiting Heterophily For Graph Neural Networks
ACM-GCNII*
93.28 ± 2.79
Revisiting Heterophily For Graph Neural Networks
BernNet
93.12 ± 0.65
BernNet: Learning Arbitrary Graph Spectral Filters via Bernstein Approximation
GPRGNN
92.92 ± 0.61
Adaptive Universal Generalized PageRank Graph Neural Network
ACM-GCNII
92.46 ± 1.97
Revisiting Heterophily For Graph Neural Networks
MLP-2
92.26 ± 0.71
Revisiting Heterophily For Graph Neural Networks
APPNP
91.18 ± 0.70
Predict then Propagate: Graph Neural Networks meet Personalized PageRank
FAGCN
88.85 ± 4.39
Beyond Low-frequency Information in Graph Convolutional Networks
GCNII*
88.52 ± 3.02
Simple and Deep Graph Convolutional Networks
0 of 36 row(s) selected.
Previous
Next
Node Classification On Texas 60 20 20 Random | SOTA | HyperAI초신경