Node Classification On Pokec
평가 지표
Accuracy
평가 결과
이 벤치마크에서 각 모델의 성능 결과
비교 표
모델 이름 | Accuracy |
---|---|
finding-global-homophily-in-graph-neural | 83.05±0.07 |
classic-gnns-are-strong-baselines-reassessing | 86.33 ± 0.17 |
polynormer-polynomial-expressive-graph | 86.10±0.05 |
learning-long-range-dependencies-on-graphs | 86.46 ± 0.09 |
graph-neural-networks-with-learnable-and | 82.83±0.04 |
feature-selection-key-to-enhance-node | 81.55±0.09 |
large-scale-learning-on-non-homophilous | 82.04±0.07 |