HyperAI
HyperAI초신경
홈
플랫폼
문서
뉴스
연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
서비스 약관
개인정보 처리방침
한국어
HyperAI
HyperAI초신경
Toggle Sidebar
전체 사이트 검색...
⌘
K
Command Palette
Search for a command to run...
플랫폼
홈
SOTA
노드 분류
Node Classification On Film 60 20 20 Random
Node Classification On Film 60 20 20 Random
평가 지표
1:1 Accuracy
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
1:1 Accuracy
Paper Title
GNNDLD
75.69±0.78
GNNDLD: Graph Neural Network with Directional Label Distribution
NHGCN
43.94 ± 1.14
Neighborhood Homophily-Guided Graph Convolutional Network
FavardGNN
43.05 ± 0.53
Graph Neural Networks with Learnable and Optimal Polynomial Bases
OptBasisGNN
42.39 ± 0.52
Graph Neural Networks with Learnable and Optimal Polynomial Bases
ACM-GCN++
41.86 ± 1.48
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN
41.84 ± 1.15
Revisiting Heterophily For Graph Neural Networks
ACM-GCN+
41.79 ± 1.01
Revisiting Heterophily For Graph Neural Networks
BernNet
41.79 ± 1.01
BernNet: Learning Arbitrary Graph Spectral Filters via Bernstein Approximation
ACMII-GCN++
41.66 ± 1.42
Revisiting Heterophily For Graph Neural Networks
GCNII*
41.54 ± 0.99
Simple and Deep Graph Convolutional Networks
ACMII-GCN+
41.5 ± 1.54
Revisiting Heterophily For Graph Neural Networks
ACM-Snowball-2
41.4 ± 1.23
Revisiting Heterophily For Graph Neural Networks
ACM-GCNII
41.37 ± 1.37
Revisiting Heterophily For Graph Neural Networks
ACM-GCNII*
41.27 ± 1.24
Revisiting Heterophily For Graph Neural Networks
ACM-Snowball-3
41.27 ± 0.8
Revisiting Heterophily For Graph Neural Networks
ACMII-Snowball-2
41.1 ± 0.75
Revisiting Heterophily For Graph Neural Networks
GCNII
40.82 ± 1.79
Simple and Deep Graph Convolutional Networks
ACMII-Snowball-3
40.31 ± 1.6
Revisiting Heterophily For Graph Neural Networks
ACM-SGC-2
40.13 ± 1.21
Revisiting Heterophily For Graph Neural Networks
ACM-SGC-1
39.33 ± 1.25
Revisiting Heterophily For Graph Neural Networks
0 of 37 row(s) selected.
Previous
Next
Node Classification On Film 60 20 20 Random | SOTA | HyperAI초신경