HyperAI
HyperAI초신경
홈
플랫폼
문서
뉴스
연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
서비스 약관
개인정보 처리방침
한국어
HyperAI
HyperAI초신경
Toggle Sidebar
전체 사이트 검색...
⌘
K
Command Palette
Search for a command to run...
플랫폼
홈
SOTA
노드 분류
Node Classification On Cornell 60 20 20
Node Classification On Cornell 60 20 20
평가 지표
1:1 Accuracy
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
1:1 Accuracy
Paper Title
ACMII-GCN
95.9 ± 1.83
Revisiting Heterophily For Graph Neural Networks
ACMII-Snowball-2
95.25 ± 1.55
Revisiting Heterophily For Graph Neural Networks
ACM-Snowball-2
95.08 ± 3.11
Revisiting Heterophily For Graph Neural Networks
ACM-GCN+
94.92 ± 2.79
Revisiting Heterophily For Graph Neural Networks
ACM-GCN
94.75 ± 3.8
Revisiting Heterophily For Graph Neural Networks
ACM-Snowball-3
94.26 ± 2.57
Revisiting Heterophily For Graph Neural Networks
ACM-GCN++
93.93 ± 1.05
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN+
93.93 ± 3.03
Revisiting Heterophily For Graph Neural Networks
ACM-SGC-2
93.77 ± 2.17
Revisiting Heterophily For Graph Neural Networks
ACM-SGC-1
93.77 ± 1.91
Revisiting Heterophily For Graph Neural Networks
ACMII-Snowball-3
93.61 ± 2.79
Revisiting Heterophily For Graph Neural Networks
ACM-GCNII*
93.44 ± 2.74
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN++
92.62 ± 2.57
Revisiting Heterophily For Graph Neural Networks
ACM-GCNII
92.62 ± 3.13
Revisiting Heterophily For Graph Neural Networks
BernNet
92.13 ± 1.64
BernNet: Learning Arbitrary Graph Spectral Filters via Bernstein Approximation
APPNP
91.80 ± 0.63
Predict then Propagate: Graph Neural Networks meet Personalized PageRank
GPRGNN
91.36 ± 0.70
Adaptive Universal Generalized PageRank Graph Neural Network
MLP-2
91.30 ± 0.70
Revisiting Heterophily For Graph Neural Networks
GCNII*
90.49 ± 4.45
Simple and Deep Graph Convolutional Networks
GCNII
89.18 ± 3.96
Simple and Deep Graph Convolutional Networks
0 of 36 row(s) selected.
Previous
Next
Node Classification On Cornell 60 20 20 | SOTA | HyperAI초신경