HyperAI초신경
홈
뉴스
최신 연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
한국어
HyperAI초신경
Toggle sidebar
전체 사이트 검색...
⌘
K
홈
SOTA
Node Classification
Node Classification On Cora 60 20 20 Random
Node Classification On Cora 60 20 20 Random
평가 지표
1:1 Accuracy
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
1:1 Accuracy
Paper Title
Repository
GPRGNN
79.51 ± 0.36
Adaptive Universal Generalized PageRank Graph Neural Network
GCNII
88.98 ± 1.33
Simple and Deep Graph Convolutional Networks
GNNDLD
92.99 ±0.9
GNNDLD: Graph Neural Network with Directional Label Distribution
-
Geom-GCN*
85.27
Geom-GCN: Geometric Graph Convolutional Networks
ACM-GCN+
89.75 ± 1.16
Revisiting Heterophily For Graph Neural Networks
ACM-GCNII*
89.00 ± 1.35
Revisiting Heterophily For Graph Neural Networks
ACM-SGC-2
87.64 ± 0.99
Revisiting Heterophily For Graph Neural Networks
BernNet
88.52 ± 0.95
BernNet: Learning Arbitrary Graph Spectral Filters via Bernstein Approximation
SGC-1
85.12 ± 1.64
Simplifying Graph Convolutional Networks
H2GCN
87.52 ± 0.61
Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs
ACM-GCN++
89.33 ± 0.81
Revisiting Heterophily For Graph Neural Networks
MLP-2
76.44 ± 0.30
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN++
89.47 ± 1.08
Revisiting Heterophily For Graph Neural Networks
ACMII-Snowball-3
89.36 ± 1.26
Revisiting Heterophily For Graph Neural Networks
GCN+JK
86.90 ± 1.51
007: Democratically Finding The Cause of Packet Drops
ACMII-GCN
89.00 ± 0.72
Revisiting Heterophily For Graph Neural Networks
GCNII*
88.93 ± 1.37
Simple and Deep Graph Convolutional Networks
Snowball-2
88.64 ± 1.15
Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks
ACM-SGC-1
86.63 ± 1.13
Revisiting Heterophily For Graph Neural Networks
Snowball-3
89.33 ± 1.3
Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks
0 of 33 row(s) selected.
Previous
Next