HyperAI초신경
홈
뉴스
최신 연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
한국어
HyperAI초신경
Toggle sidebar
전체 사이트 검색...
⌘
K
홈
SOTA
Node Classification
Node Classification On Chameleon 60 20 20
Node Classification On Chameleon 60 20 20
평가 지표
1:1 Accuracy
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
1:1 Accuracy
Paper Title
Repository
GAT
63.9 ± 0.46
Graph Attention Networks
ACM-GCNII*
61.66 ± 2.29
Revisiting Heterophily For Graph Neural Networks
GCN
64.18 ± 2.62
Semi-Supervised Classification with Graph Convolutional Networks
ACMII-Snowball-3
67.53 ± 2.83
Revisiting Heterophily For Graph Neural Networks
Geom-GCN*
60.9
Geom-GCN: Geometric Graph Convolutional Networks
GCN+JK
64.68 ± 2.85
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN++
75.93 ± 1.71
Revisiting Heterophily For Graph Neural Networks
ACM-GCNII
58.73 ± 2.52
Revisiting Heterophily For Graph Neural Networks
ACM-Snowball-2
68.51 ± 1.7
Revisiting Heterophily For Graph Neural Networks
ACMII-Snowball-2
67.83 ± 2.63
Revisiting Heterophily For Graph Neural Networks
GraphSAGE
62.15 ± 0.42
Inductive Representation Learning on Large Graphs
Snowball-3
65.49 ± 1.64
Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks
MLP-2
46.72 ± 0.46
Revisiting Heterophily For Graph Neural Networks
Snowball-2
64.99 ± 2.39
Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks
GCNII*
62.8 ± 2.87
Simple and Deep Graph Convolutional Networks
ACMII-GCN+
75.51 ± 1.58
Revisiting Heterophily For Graph Neural Networks
MixHop
36.28 ± 10.22
MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing
HH-GraphSAGE
62.98 ± 3.35
Half-Hop: A graph upsampling approach for slowing down message passing
ACM-Snowball-3
68.4 ± 2.05
Revisiting Heterophily For Graph Neural Networks
ACM-SGC-1
63.68 ± 1.62
Revisiting Heterophily For Graph Neural Networks
0 of 38 row(s) selected.
Previous
Next