HyperAI
HyperAI초신경
홈
뉴스
최신 연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
한국어
HyperAI
HyperAI초신경
Toggle sidebar
전체 사이트 검색...
⌘
K
홈
SOTA
노드 분류, 비동질성 그래프, 이종 그래프
Node Classification On Non Homophilic 4
Node Classification On Non Homophilic 4
평가 지표
1:1 Accuracy
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
1:1 Accuracy
Paper Title
Repository
ACM-Snowball-2
68.51 ± 1.7
Revisiting Heterophily For Graph Neural Networks
-
ACM-Snowball-3
68.4 ± 2.05
Revisiting Heterophily For Graph Neural Networks
-
MixHop
36.28 ± 10.22
MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing
-
ACM-SGC-1
63.68 ± 1.62
Revisiting Heterophily For Graph Neural Networks
-
SGC-2
62.67 ± 2.41
Simplifying Graph Convolutional Networks
-
ACMII-Snowball-3
67.53 ± 2.83
Revisiting Heterophily For Graph Neural Networks
-
ACM-SGC-2
60.48 ± 1.55
Revisiting Heterophily For Graph Neural Networks
-
GPRGNN
67.48 ± 0.40
Adaptive Universal Generalized PageRank Graph Neural Network
-
GraphSAGE
62.15 ± 0.42
Inductive Representation Learning on Large Graphs
-
MLP-2
46.72 ± 0.46
Revisiting Heterophily For Graph Neural Networks
-
ACMII-GCN
68.38 ± 1.36
Revisiting Heterophily For Graph Neural Networks
-
GCN+JK
64.68 ± 2.85
Revisiting Heterophily For Graph Neural Networks
-
GAT+JK
68.14 ± 1.18
Revisiting Heterophily For Graph Neural Networks
-
ACM-GCNII
58.73 ± 2.52
Revisiting Heterophily For Graph Neural Networks
-
FAGCN
49.47 ± 2.84
Beyond Low-frequency Information in Graph Convolutional Networks
-
GCN
64.18 ± 2.62
Semi-Supervised Classification with Graph Convolutional Networks
-
SGC-1
64.86 ± 1.81
Simplifying Graph Convolutional Networks
-
BernNet
68.29 ± 1.58
BernNet: Learning Arbitrary Graph Spectral Filters via Bernstein Approximation
-
ACM-GCN++
75.23 ± 1.72
Revisiting Heterophily For Graph Neural Networks
-
GCNII*
62.8 ± 2.87
Simple and Deep Graph Convolutional Networks
-
0 of 32 row(s) selected.
Previous
Next
Node Classification On Non Homophilic 4 | SOTA | HyperAI초신경