HyperAI
HyperAI초신경
홈
플랫폼
문서
뉴스
연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
서비스 약관
개인정보 처리방침
한국어
HyperAI
HyperAI초신경
Toggle Sidebar
전체 사이트 검색...
⌘
K
Command Palette
Search for a command to run...
플랫폼
홈
SOTA
노드 분류, 비동질성 그래프, 이종 그래프
Node Classification On Non Homophilic 4
Node Classification On Non Homophilic 4
평가 지표
1:1 Accuracy
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
1:1 Accuracy
Paper Title
ACM-GCN+
76.08 ± 2.13
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN++
75.93 ± 1.71
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN+
75.51 ± 1.58
Revisiting Heterophily For Graph Neural Networks
ACM-GCN++
75.23 ± 1.72
Revisiting Heterophily For Graph Neural Networks
ACM-Snowball-2
68.51 ± 1.7
Revisiting Heterophily For Graph Neural Networks
ACM-Snowball-3
68.4 ± 2.05
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN
68.38 ± 1.36
Revisiting Heterophily For Graph Neural Networks
BernNet
68.29 ± 1.58
BernNet: Learning Arbitrary Graph Spectral Filters via Bernstein Approximation
GAT+JK
68.14 ± 1.18
Revisiting Heterophily For Graph Neural Networks
ACMII-Snowball-2
67.83 ± 2.63
Revisiting Heterophily For Graph Neural Networks
ACMII-Snowball-3
67.53 ± 2.83
Revisiting Heterophily For Graph Neural Networks
GPRGNN
67.48 ± 0.40
Adaptive Universal Generalized PageRank Graph Neural Network
Snowball-3
65.49 ± 1.64
Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks
Snowball-2
64.99 ± 2.39
Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks
SGC-1
64.86 ± 1.81
Simplifying Graph Convolutional Networks
GCN+JK
64.68 ± 2.85
Revisiting Heterophily For Graph Neural Networks
GCN
64.18 ± 2.62
Semi-Supervised Classification with Graph Convolutional Networks
GAT
63.9 ± 0.46
Graph Attention Networks
ACM-SGC-1
63.68 ± 1.62
Revisiting Heterophily For Graph Neural Networks
GCNII*
62.8 ± 2.87
Simple and Deep Graph Convolutional Networks
0 of 32 row(s) selected.
Previous
Next
Node Classification On Non Homophilic 4 | SOTA | HyperAI초신경