HyperAI초신경

Node Classification On Non Homophilic 10

평가 지표

1:1 Accuracy

평가 결과

이 벤치마크에서 각 모델의 성능 결과

비교 표
모델 이름1:1 Accuracy
non-local-graph-neural-networks29.5 ± 1.3
revisiting-heterophily-for-graph-neural35.49 ± 1.06
mixhop-higher-order-graph-convolution32.22 ± 2.34
revisiting-heterophily-for-graph-neural37.31 ± 1.09
revisiting-heterophily-for-graph-neural36.63 ± 0.84
revisiting-heterophily-for-graph-neural36.31 ± 1.2
non-local-graph-neural-networks37.9 ± 1.3
generalizing-graph-neural-networks-beyond35.70 ± 1.00
neural-sheaf-diffusion-a-topological37.79 ± 1.01
two-sides-of-the-same-coin-heterophily-and37.54 ± 1.56 
geom-gcn-geometric-graph-convolutional-131.59 ± 1.15
revisiting-heterophily-for-graph-neural36.14 ± 1.44
two-sides-of-the-same-coin-heterophily-and35.16 ± 0.9
finding-global-homophily-in-graph-neural37.35 ± 1.30
neural-sheaf-diffusion-a-topological37.80 ± 1.22
deformable-graph-convolutional-networks37.07±0.79
simple-and-deep-graph-convolutional-networks-137.44 ± 1.30
finding-global-homophily-in-graph-neural37.70 ± 1.40 
large-scale-learning-on-non-homophilous36.10 ± 1.55 
revisiting-heterophily-for-graph-neural36.26 ± 1.34
revisiting-heterophily-for-graph-neural36.04 ± 0.83
neural-sheaf-diffusion-a-topological37.81 ± 1.15
non-local-graph-neural-networks31.6 ± 1.0
breaking-the-limit-of-graph-neural-networks36.53 ± 0.77 
revisiting-heterophily-for-graph-neural37.09 ± 1.32
beyond-low-frequency-information-in-graph34.82 ± 1.35