HyperAI
HyperAI초신경
홈
플랫폼
문서
뉴스
연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
서비스 약관
개인정보 처리방침
한국어
HyperAI
HyperAI초신경
Toggle Sidebar
전체 사이트 검색...
⌘
K
Command Palette
Search for a command to run...
플랫폼
홈
SOTA
다중 레이블 분류
Multi Label Classification On Pascal Voc 2007
Multi Label Classification On Pascal Voc 2007
평가 지표
mAP
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
mAP
Paper Title
Q2L-CvT(ImageNet-21K pretrained, resolution 384)
97.3
Query2Label: A Simple Transformer Way to Multi-Label Classification
Q2L-TResL(ImageNet-21K pretrained, resolution 448)
96.9
Query2Label: A Simple Transformer Way to Multi-Label Classification
GKGNet
96.8
GKGNet: Group K-Nearest Neighbor based Graph Convolutional Network for Multi-Label Image Recognition
MLD-TResNetL-AAM (resolution 448, pretrain from OpenImages V6)
96.70
Combining Metric Learning and Attention Heads For Accurate and Efficient Multilabel Image Classification
M3TR(448×448)
96.5
M3TR: Multi-modal Multi-label Recognition with Transformer
Q2L-TResL(resolution 448)
96.1
Query2Label: A Simple Transformer Way to Multi-Label Classification
MSRN(pretrain from MS-COCO)
96.0
Multi-layered Semantic Representation Network for Multi-label Image Classification
TResNet-L (resolution 448, pretrain from MS-COCO)
95.8
Asymmetric Loss For Multi-Label Classification
TDRG-R101(448×448)
95.0
Transformer-based Dual Relation Graph for Multi-label Image Recognition
SSGRL (pretrain from MS-COCO)
95.0
Learning Semantic-Specific Graph Representation for Multi-Label Image Recognition
MCAR (ResNet101, 448x448)
94.8
Learning to Discover Multi-Class Attentional Regions for Multi-Label Image Recognition
TResNet-L (resolution 448, pretrain from ImageNet)
94.6
Asymmetric Loss For Multi-Label Classification
ML-GCN (pretrain from ImageNet)
94.0
Multi-Label Image Recognition with Graph Convolutional Networks
SSGRL (pretrain from ImageNet)
93.4
Learning Semantic-Specific Graph Representation for Multi-Label Image Recognition
Ours PF-DLDL
93.4
Deep Label Distribution Learning with Label Ambiguity
ViT-B-16 (ImageNet-21K pretrained)
93.1
ImageNet-21K Pretraining for the Masses
FeV+LV (pretrain from ImageNet)
92.0
Exploit Bounding Box Annotations for Multi-label Object Recognition
0 of 17 row(s) selected.
Previous
Next