HyperAIHyperAI초신경
홈뉴스연구 논문튜토리얼데이터셋백과사전SOTALLM 모델GPU 랭킹컨퍼런스
전체 검색
소개
한국어
HyperAIHyperAI초신경
  1. 홈
  2. SOTA
  3. 분자 특성 예측
  4. Molecular Property Prediction On

Molecular Property Prediction On

평가 지표

RMSE

평가 결과

이 벤치마크에서 각 모델의 성능 결과

모델 이름
RMSE
Paper TitleRepository
N-GramRF0.812N-Gram Graph: Simple Unsupervised Representation for Graphs, with Applications to Molecules
SMA0.609Self-Guided Masked Autoencoders for Domain-Agnostic Self-Supervised Learning
ChemBERTa-2 (MTR-77M)0.798ChemBERTa-2: Towards Chemical Foundation Models
GROVER (large)0.823Self-Supervised Graph Transformer on Large-Scale Molecular Data
D-MPNN0.683Analyzing Learned Molecular Representations for Property Prediction
N-GramXGB2.072N-Gram Graph: Simple Unsupervised Representation for Graphs, with Applications to Molecules
GROVER (base)0.817Self-Supervised Graph Transformer on Large-Scale Molecular Data
SPMM0.706Bidirectional Generation of Structure and Properties Through a Single Molecular Foundation Model
Uni-Mol0.603Uni-Mol: A Universal 3D Molecular Representation Learning Framework-
ChemBFN0.746A Bayesian Flow Network Framework for Chemistry Tasks
S-CGIB0.762±0.042Pre-training Graph Neural Networks on Molecules by Using Subgraph-Conditioned Graph Information Bottleneck-
ChemRL-GEM0.66ChemRL-GEM: Geometry Enhanced Molecular Representation Learning for Property Prediction-
PretrainGNN0.739Strategies for Pre-training Graph Neural Networks
0 of 13 row(s) selected.
HyperAI

학습, 이해, 실천, 커뮤니티와 함께 인공지능의 미래를 구축하다

한국어

소개

회사 소개데이터셋 도움말

제품

뉴스튜토리얼데이터셋백과사전

링크

TVM 한국어Apache TVMOpenBayes

© HyperAI초신경

TwitterBilibili