HyperAI초신경

Medical Image Segmentation On Cvc Colondb

평가 지표

mIoU
mean Dice

평가 결과

이 벤치마크에서 각 모델의 성능 결과

비교 표
모델 이름mIoUmean Dice
g-cascade-efficient-cascaded-graph0.74600.8261
transfuse-fusing-transformers-and-cnns-for0.6760.744
emcad-efficient-multi-scale-convolutional-0.9231
uacanet-uncertainty-augmented-context0.7040.783
duat-dual-aggregation-transformer-network-for0.7370.819
sam-eg-segment-anything-model-with-egde0.6890.774
promise-promptable-medical-image-segmentation0.7890.874
comma-propagating-complementary-multi-level0.6890.754
kdas3-knowledge-distillation-via-attention0.6790.759
uacanet-uncertainty-augmented-context0.6780.751
metaformer-and-cnn-hybrid-model-for-polyp0.90960.9526
meta-polyp-a-baseline-for-efficient-polyp0.790.867
medical-image-segmentation-via-cascaded0.74530.8254
hardnet-mseg-a-simple-encoder-decoder-polyp0.6600.731
transfuse-fusing-transformers-and-cnns-for0.6960.773
a-comprehensive-study-on-colorectal-polyp0.84660.8474
esfpnet-efficient-deep-learning-architecture0.7300.811
stepwise-feature-fusion-local-guides-global0.7210.802
polyp-pvt-polyp-segmentation-with-pyramid0.7270.808
caranet-context-axial-reverse-attention0.6890.773
hardnet-dfus-an-enhanced-harmonically-0.774
using-duck-net-for-polyp-image-segmentation-10.87850.9353
pranet-parallel-reverse-attention-network-for0.6490.709