Medical Image Segmentation On Cvc
평가 지표
Dice
Recall
mIoU
precision
평가 결과
이 벤치마크에서 각 모델의 성능 결과
모델 이름 | Dice | Recall | mIoU | precision | Paper Title | Repository |
---|---|---|---|---|---|---|
ResUNet++ + TTA + CRF | 0.8130 | 0.6875 | 0.8477 | 0.6276 | A Comprehensive Study on Colorectal Polyp Segmentation with ResUNet++, Conditional Random Field and Test-Time Augmentation | |
ResUNet++ + TTA | 0.8125 | 0.6896 | 0.8467 | 0.6421 | A Comprehensive Study on Colorectal Polyp Segmentation with ResUNet++, Conditional Random Field and Test-Time Augmentation | |
Meta-Polyp | 0.926 | - | 0.862 | - | Meta-Polyp: a baseline for efficient Polyp segmentation | |
ResUNet++ + CRF | 0.8811 | 0.7743 | 0.8739 | 0.6706 | A Comprehensive Study on Colorectal Polyp Segmentation with ResUNet++, Conditional Random Field and Test-Time Augmentation | |
ResUNet++ | 0.8798 | 0.7749 | 0.8730 | 0.6702 | ResUNet++: An Advanced Architecture for Medical Image Segmentation | - |
0 of 5 row(s) selected.