Medical Image Segmentation On Automatic
평가 지표
Avg DSC
평가 결과
이 벤치마크에서 각 모델의 성능 결과
비교 표
모델 이름 | Avg DSC |
---|---|
transunet-transformers-make-strong-encoders | 87.57 |
g-cascade-efficient-cascaded-graph | 92.23 |
lhu-net-a-light-hybrid-u-net-for-cost | 92.65 |
medical-image-segmentation-via-cascaded | 91.63 |
g-cascade-efficient-cascaded-graph | 91.95 |
swin-unet-unet-like-pure-transformer-for | 90.00 |
nnformer-interleaved-transformer-for | 92.06 |
the-fully-convolutional-transformer-for | 93.02 |
ai-sam-automatic-and-interactive-segment | 93.89 |
transunet-transformers-make-strong-encoders | 86.75 |
ai-sam-automatic-and-interactive-segment | 92.06 |
s2s2-semantic-stacking-for-robust-semantic | 90.4 |
adaptive-t-vmf-dice-loss-for-multi-class | 94.26 |
transunet-transformers-make-strong-encoders | 89.71 |
mist-medical-image-segmentation-transformer | 92.56 |
multi-scale-hierarchical-vision-transformer-1 | 92.32 |
emcad-efficient-multi-scale-convolutional | 92.12 |
segformer3d-an-efficient-transformer-for-3d | 90.96 |
missformer-an-effective-medical-image | 87.9 |
medical-image-segmentation-via-cascaded | 91.46 |