HyperAI초신경
홈
뉴스
최신 연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
한국어
HyperAI초신경
Toggle sidebar
전체 사이트 검색...
⌘
K
홈
SOTA
Machine Translation
Machine Translation On Wmt2014 German English
Machine Translation On Wmt2014 German English
평가 지표
BLEU score
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
BLEU score
Paper Title
Repository
CMLM+LAT+1 iterations
29.91
Incorporating a Local Translation Mechanism into Non-autoregressive Translation
-
SimCut
34.86
Bi-SimCut: A Simple Strategy for Boosting Neural Machine Translation
CNAT
30.75
Non-Autoregressive Translation by Learning Target Categorical Codes
BiBERT
34.94
BERT, mBERT, or BiBERT? A Study on Contextualized Embeddings for Neural Machine Translation
Denoising autoencoders (non-autoregressive)
25.43
Deterministic Non-Autoregressive Neural Sequence Modeling by Iterative Refinement
NAT +FT + NPD
23.20
Non-Autoregressive Neural Machine Translation
FlowSeq-large (NPD n = 15)
27.71
FlowSeq: Non-Autoregressive Conditional Sequence Generation with Generative Flow
Mega
33.12
Mega: Moving Average Equipped Gated Attention
SMT + iterative backtranslation (unsupervised)
17.43
Unsupervised Statistical Machine Translation
FlowSeq-large
25.4
FlowSeq: Non-Autoregressive Conditional Sequence Generation with Generative Flow
Bi-SimCut
35.15
Bi-SimCut: A Simple Strategy for Boosting Neural Machine Translation
FlowSeq-base
23.36
FlowSeq: Non-Autoregressive Conditional Sequence Generation with Generative Flow
MAT+Knee
31.9
Wide-minima Density Hypothesis and the Explore-Exploit Learning Rate Schedule
CMLM+LAT+4 iterations
32.04
Incorporating a Local Translation Mechanism into Non-autoregressive Translation
-
FlowSeq-large (IWD n=15)
27.16
FlowSeq: Non-Autoregressive Conditional Sequence Generation with Generative Flow
FlowSeq-large (NPD n = 30)
28.29
FlowSeq: Non-Autoregressive Conditional Sequence Generation with Generative Flow
0 of 16 row(s) selected.
Previous
Next