HyperAI
HyperAI초신경
홈
플랫폼
문서
뉴스
연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
서비스 약관
개인정보 처리방침
한국어
HyperAI
HyperAI초신경
Toggle Sidebar
전체 사이트 검색...
⌘
K
Command Palette
Search for a command to run...
플랫폼
홈
SOTA
링크 예측
Link Prediction On Yago3 10
Link Prediction On Yago3 10
평가 지표
Hits@1
Hits@10
Hits@3
MRR
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
Hits@1
Hits@10
Hits@3
MRR
Paper Title
MEIM
0.514
0.716
0.625
0.585
MEIM: Multi-partition Embedding Interaction Beyond Block Term Format for Efficient and Expressive Link Prediction
ComplEx-DURA (large model)
0.511
0.713
-
0.584
Duality-Induced Regularizer for Tensor Factorization Based Knowledge Graph Completion
ComplEx-N3 (reciprocal)
-
-
-
0.58
Canonical Tensor Decomposition for Knowledge Base Completion
CP-DURA (large model)
0.506
0.709
-
0.579
Duality-Induced Regularizer for Tensor Factorization Based Knowledge Graph Completion
MEI
0.505
0.709
0.622
0.578
Multi-Partition Embedding Interaction with Block Term Format for Knowledge Graph Completion
RefE
0.503
0.712
0.621
0.577
Low-Dimensional Hyperbolic Knowledge Graph Embeddings
BoxE
0.494
0.699
-
0.567
BoxE: A Box Embedding Model for Knowledge Base Completion
SAFRAN (white box, rule based)
0.492
0.693
-
0.564
SAFRAN: An interpretable, rule-based link prediction method outperforming embedding models
NBFNet
0.480
0.708
0.612
0.563
Neural Bellman-Ford Networks: A General Graph Neural Network Framework for Link Prediction
A*Net
0.470
0.707
0.611
0.556
-
ComplEx
-
-
-
0.551
Start Small, Think Big: On Hyperparameter Optimization for Large-Scale Knowledge Graph Embeddings
HAKE
0.462
0.694
0.596
0.545
Learning Hierarchy-Aware Knowledge Graph Embeddings for Link Prediction
Rot-Pro
0.443
0.699
0.596
0.542
Rot-Pro: Modeling Transitivity by Projection in Knowledge Graph Embedding
DensE
0.465
0.678
0.585
0.541
DensE: An Enhanced Non-commutative Representation for Knowledge Graph Embedding with Adaptive Semantic Hierarchy
InteractE
0.462
0.687
-
0.541
InteractE: Improving Convolution-based Knowledge Graph Embeddings by Increasing Feature Interactions
DihEdral
0.381
0.643
0.523
0.472
Relation Embedding with Dihedral Group in Knowledge Graph
ConvE
-
0.62
-
0.44
Convolutional 2D Knowledge Graph Embeddings
ComplEx-N3 (large model, reciprocal)
-
0.71
-
-
Canonical Tensor Decomposition for Knowledge Base Completion
0 of 18 row(s) selected.
Previous
Next
Link Prediction On Yago3 10 | SOTA | HyperAI초신경