Link Prediction On Wn18
평가 지표
Hits@1
Hits@10
Hits@3
MR
MRR
평가 결과
이 벤치마크에서 각 모델의 성능 결과
비교 표
모델 이름 | Hits@1 | Hits@10 | Hits@3 | MR | MRR |
---|---|---|---|---|---|
quaternion-knowledge-graph-embedding | 0.945 | 0.959 | 0.954 | 162 | 0.95 |
nscaching-simple-and-efficient-negative | - | 0.9398 | - | 1072 | 0.9355 |
analyzing-knowledge-graph-embedding-methods | 0.931 | 0.956 | 0.950 | - | 0.941 |
rotate-knowledge-graph-embedding-by | 0.942 | 0.957 | 0.950 | 254 | 0.947 |
rotate-knowledge-graph-embedding-by | 0.944 | 0.959 | 0.952 | 309 | 0.949 |
graphvite-a-high-performance-cpu-gpu-hybrid | 0.944 | 0.954 | 0.950 | 412 | 0.948 |
knowledge-graph-embedding-with-linear | 0.947 | 0.961 | 0.955 | 170 | 0.952 |
augmenting-and-tuning-knowledge-graph | - | - | - | - | 0.911 |
multi-partition-embedding-interaction-with | 0.946 | 0.957 | 0.952 | - | 0.950 |
adaptive-convolution-for-multi-relational | 0.947 | 0.958 | 0.955 | - | 0.951 |
convolutional-2d-knowledge-graph-embeddings | 0.935 | 0.956 | 0.946 | 374 | 0.943 |
hypernetwork-knowledge-graph-embeddings | 0.947 | 0.958 | 0.955 | - | 0.951 |
kbgan-adversarial-learning-for-knowledge | - | 0.948 | - | - | 0.779 |
tucker-tensor-factorization-for-knowledge | 0.949 | 0.958 | 0.955 | - | 0.953 |
pykeen-1-0-a-python-library-for-training-and | - | - | - | - | - |
quatde-dynamic-quaternion-embedding-for | 0.944 | 0.961 | 0.954 | 120 | 0.95 |
holographic-embeddings-of-knowledge-graphs | 0.930 | 0.949 | 0.945 | - | 0.938 |
knowledge-graph-embedding-via-dynamic-mapping | - | 0.922 | - | 212 | - |
augmenting-compositional-models-for-knowledge | .931 | .951 | .945 | 183 | .939 |
efficient-parallel-translating-embedding-for | - | 0.668 | - | 215 | - |
dense-an-enhanced-non-abelian-group | 0.945 | 0.959 | 0.954 | 285 | 0.950 |
embedding-entities-and-relations-for-learning | 0.728 | 0.936 | 0.914 | 902 | 0.822 |
autokge-searching-scoring-functions-for | - | 0.961 | - | - | 0.952 |
multi-partition-embedding-interaction-with | 0.946 | 0.960 | 0.953 | - | 0.951 |
complex-embeddings-for-simple-link-prediction | 0.936 | 0.947 | 0.936 | - | 0.941 |
representation-learning-with-ordered-relation | - | 0.957 | - | 199 | - |
auggan-cross-domain-adaptation-with-gan-based | - | 0.7987 | - | - | - |
simple-embedding-for-link-prediction-in | 0.939 | 0.947 | 0.944 | - | 0.942 |
pykeen-1-0-a-python-library-for-training-and | - | - | - | - | - |
canonical-tensor-decomposition-for-knowledge | - | 0.96 | - | - | - |
discriminative-gaifman-models | 0.761 | 0.939 | - | 352 | - |
pykeen-1-0-a-python-library-for-training-and | - | - | - | - | - |
logicenn-a-neural-based-knowledge-graphs | - | 0.948 | - | 357 | 0.923 |
convolutional-2d-knowledge-graph-embeddings | 0.953 | 0.964 | 0.964 | 740 | 0.963 |
mde-multi-distance-embeddings-for-link | - | 0.956 | - | 118 | 0.871 |
translating-embeddings-for-modeling-multi | - | 0.754 | - | 263 | - |
analogical-inference-for-multi-relational | 0.939 | 0.947 | 0.944 | - | 0.942 |