Instance Segmentation On Coco Minival
평가 지표
APL
APM
APS
mask AP
평가 결과
이 벤치마크에서 각 모델의 성능 결과
비교 표
모델 이름 | APL | APM | APS | mask AP |
---|---|---|---|---|
x-volution-on-the-unification-of-convolution | 53.1 | 40 | 19.2 | 37.2 |
improved-multiscale-vision-transformers-for | - | - | - | 50.5 |
xcit-cross-covariance-image-transformers | - | - | - | 43.7 |
internimage-exploring-large-scale-vision | - | - | - | 44.5 |
bottleneck-transformers-for-visual | - | - | - | 40.7 |
queryinst-parallelly-supervised-mask-query | 68.3 | 52.6 | 30.8 | 48.9 |
detrs-with-collaborative-hybrid-assignments | 74.6 | 59.7 | 38.9 | 56.6 |
eva-exploring-the-limits-of-masked-visual | 72.0 | 58.4 | 37.6 | 55.0 |
cbnetv2-a-composite-backbone-network | - | - | - | 51.8 |
res2net-a-new-multi-scale-backbone | 53.7 | 37.9 | 15.7 | 35.6 |
swin-transformer-hierarchical-vision | - | - | - | 50.4 |
resnest-split-attention-networks | - | - | - | 46.25 |
vision-transformer-adapter-for-dense | - | - | - | 52.2 |
elsa-enhanced-local-self-attention-for-vision | - | - | - | 44.4 |
exploring-plain-vision-transformer-backbones | - | - | - | 52 |
a-novel-region-of-interest-extraction-layer | 48.7 | 39 | 19.1 | 35.8 |
x-paste-revisit-copy-paste-at-scale-with-clip | - | - | - | 48.8 |
swin-transformer-v2-scaling-up-capacity-and | - | - | - | 53.7 |
improved-multiscale-vision-transformers-for | - | - | - | 46.2 |
path-aggregation-network-for-instance | - | - | - | 37.8 |
resnest-split-attention-networks | - | - | - | 44.5 |
resnest-split-attention-networks | - | - | - | 41.56 |
masked-attention-mask-transformer-for | - | - | - | 50.1 |
mask-scoring-r-cnn | - | - | - | 39.1 |
elsa-enhanced-local-self-attention-for-vision | - | - | - | 43.0 |
bottleneck-transformers-for-visual | - | - | - | 44.4 |
swin-transformer-hierarchical-vision | - | - | - | 49.5 |
moat-alternating-mobile-convolution-and | - | - | - | 49.3 |
vision-transformer-adapter-for-dense | - | - | - | 54.2 |
moat-alternating-mobile-convolution-and | - | - | - | 49.0 |
adaptively-connected-neural-networks | - | - | - | 35.2 |
end-to-end-semi-supervised-object-detection | - | - | - | 51.9 |
dilated-neighborhood-attention-transformer | - | - | - | 50.8 |
bottleneck-transformers-for-visual | - | - | - | 43.7 |
exploring-plain-vision-transformer-backbones | - | - | - | 53.1 |
focal-self-attention-for-local-global | - | - | - | 50.9 |
internimage-exploring-large-scale-vision | - | - | - | 43.7 |
simple-copy-paste-is-a-strong-data | - | - | - | 46.8 |
recursively-refined-r-cnn-instance | - | 42.8 | 22.6 | 40.2 |
mask-dino-towards-a-unified-transformer-based-1 | - | - | - | 52.6 |
general-object-foundation-model-for-images | - | - | - | 54.2 |
mask-dino-towards-a-unified-transformer-based-1 | - | - | - | 54.5 |
moat-alternating-mobile-convolution-and | - | - | - | 44.6 |
simple-copy-paste-is-a-strong-data | - | - | - | 48.9 |
mask-scoring-r-cnn | - | - | - | 36.0 |
the-devil-is-in-the-labels-semantic | - | - | - | 41.4 |
mask-frozen-detr-high-quality-instance | 72.9 | 58.4 | 37.2 | 54.9 |
internimage-exploring-large-scale-vision | - | - | - | 48.8 |
moat-alternating-mobile-convolution-and | - | - | - | 47.4 |
general-object-foundation-model-for-images | - | - | - | 53.0 |
moat-alternating-mobile-convolution-and | - | - | - | 43.3 |
vision-transformer-adapter-for-dense | - | - | - | 52.5 |
recursively-refined-r-cnn-instance | 52.8 | 41 | 20.4 | 38.2 |
non-local-neural-networks | - | - | - | 37.1 |
2103-15358 | - | - | - | 45.7 |
could-giant-pretrained-image-models-extract | - | - | - | 51.6 |
centermask-real-time-anchor-free-instance-1 | - | - | - | 42.5 |
internimage-exploring-large-scale-vision | 74.4 | 58.4 | 37.9 | 55.4 |
xcit-cross-covariance-image-transformers | - | - | - | 43.0 |
a-novel-region-of-interest-extraction-layer | 51.2 | 41 | 20.2 | 37.2 |
190807919 | - | - | - | 41.0 |
recursively-refined-r-cnn-instance | 56.1 | 43.6 | 22.3 | 40.4 |
global-context-networks | - | - | - | 44.7 |
hiera-a-hierarchical-vision-transformer | - | - | - | 48.6 |
internimage-exploring-large-scale-vision | - | - | - | - |
yolact-real-time-instance-segmentation | - | - | - | 29.9 |
moat-alternating-mobile-convolution-and | - | - | - | 50.3 |
improved-multiscale-vision-transformers-for | - | - | - | 47.1 |
hybrid-task-cascade-for-instance-segmentation | - | - | - | 38.2 |
mpvit-multi-path-vision-transformer-for-dense | - | - | - | 47.0 |
mask-scoring-r-cnn | - | - | - | 38.2 |
attentive-normalization | - | - | - | 40.2 |
vit-comer-vision-transformer-with | - | - | - | 55.9 |
improved-multiscale-vision-transformers-for | - | - | - | 48.5 |
resnest-split-attention-networks | - | - | - | 44.21 |
cbnetv2-a-composite-backbone-network | - | - | - | 51 |
mpvit-multi-path-vision-transformer-for-dense | - | - | - | 45.8 |
end-to-end-semi-supervised-object-detection | - | - | - | 52.5 |
2103-15358 | - | - | - | 45.1 |
recursively-refined-r-cnn-instance | 54.3 | 42.1 | 20.7 | 39.1 |
davit-dual-attention-vision-transformers | - | - | - | 44.3 |
moat-alternating-mobile-convolution-and | - | - | - | 47.0 |
internimage-exploring-large-scale-vision | - | - | - | 48.5 |
non-local-neural-networks | - | - | - | 35.5 |
res2net-a-new-multi-scale-backbone | - | - | - | 41.3 |
gcnet-non-local-networks-meet-squeeze | - | - | - | 40.9 |
deep-high-resolution-representation-learning | - | - | - | 41.0 |
weight-standardization | 56.08 | 41.73 | 18.32 | 38.34 |
moat-alternating-mobile-convolution-and | - | - | - | 45.0 |
spinenet-learning-scale-permuted-backbone-for | - | - | - | 46.1 |
non-local-neural-networks | - | - | - | 40.3 |
general-object-foundation-model-for-images | - | - | - | 48.4 |
centermask-real-time-anchor-free-instance-1 | - | - | - | 40.2 |