HyperAI초신경
홈
뉴스
최신 연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
한국어
HyperAI초신경
Toggle sidebar
전체 사이트 검색...
⌘
K
홈
SOTA
Incremental Learning
Incremental Learning On Imagenet100 10 Steps
Incremental Learning On Imagenet100 10 Steps
평가 지표
# M Params
Average Incremental Accuracy
Average Incremental Accuracy Top-5
Final Accuracy
Final Accuracy Top-5
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
# M Params
Average Incremental Accuracy
Average Incremental Accuracy Top-5
Final Accuracy
Final Accuracy Top-5
Paper Title
Repository
TCIL
116.54
77.66
94.17
67.34
88.84
Resolving Task Confusion in Dynamic Expansion Architectures for Class Incremental Learning
RPSNet
-
-
87.90
-
74.00
An Adaptive Random Path Selection Approach for Incremental Learning
BiC
11.22
-
90.60
-
84.40
Large Scale Incremental Learning
WA
11.22
-
91.00
-
84.10
Maintaining Discrimination and Fairness in Class Incremental Learning
-
E2E
11.22
-
89.92
-
80.29
End-to-End Incremental Learning
DyTox
11.01
77.15
92.04
69.10
87.98
DyTox: Transformers for Continual Learning with DYnamic TOken eXpansion
DER
-
76.12
92.79
66.07
88.38
DER: Dynamically Expandable Representation for Class Incremental Learning
iCaRL
11.22
-
83.60
-
63.80
iCaRL: Incremental Classifier and Representation Learning
DER w/o Pruning
112.27
77.18
93.23
66.70
87.52
DER: Dynamically Expandable Representation for Class Incremental Learning
FOSTER
-
77.75
-
-
-
FOSTER: Feature Boosting and Compression for Class-Incremental Learning
TCIL-Lite
26.36
77.50
93.60
67.30
87.94
Resolving Task Confusion in Dynamic Expansion Architectures for Class Incremental Learning
kNN-CLIP
-
85.1
-
-
-
Revisiting a kNN-based Image Classification System with High-capacity Storage
-
RMM (ResNet-18)
-
78.47
-
-
-
RMM: Reinforced Memory Management for Class-Incremental Learning
0 of 13 row(s) selected.
Previous
Next