HyperAI
HyperAI초신경
홈
뉴스
최신 연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
한국어
HyperAI
HyperAI초신경
Toggle sidebar
전체 사이트 검색...
⌘
K
홈
SOTA
증분 학습
Incremental Learning On Imagenet 10 Steps
Incremental Learning On Imagenet 10 Steps
평가 지표
# M Params
Average Incremental Accuracy
Average Incremental Accuracy Top-5
Final Accuracy
Final Accuracy Top-5
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
# M Params
Average Incremental Accuracy
Average Incremental Accuracy Top-5
Final Accuracy
Final Accuracy Top-5
Paper Title
Repository
DER w/o Pruning
116.89
68.84
88.17
60.16
82.86
DER: Dynamically Expandable Representation for Class Incremental Learning
-
DyTox
11.36
71.29
88.59
63.34
84.49
DyTox: Transformers for Continual Learning with DYnamic TOken eXpansion
-
E2E
11.68
-
72.09
-
52.29
End-to-End Incremental Learning
-
WA
11.68
65.67
86.60
55.60
81.10
Maintaining Discrimination and Fairness in Class Incremental Learning
-
DER
-
66.73
87.08
58.62
81.89
DER: Dynamically Expandable Representation for Class Incremental Learning
-
RMM (ResNet-18)
-
67.45
-
-
-
RMM: Reinforced Memory Management for Class-Incremental Learning
-
BiC
11.68
-
84.00
-
73.20
Large Scale Incremental Learning
-
FOSTER
-
68.34
-
-
-
FOSTER: Feature Boosting and Compression for Class-Incremental Learning
-
kNN-CLIP
-
85.5
-
-
-
Revisiting a kNN-based Image Classification System with High-capacity Storage
-
iCaRL
11.68
38.40
63.70
22.70
44.00
iCaRL: Incremental Classifier and Representation Learning
-
0 of 10 row(s) selected.
Previous
Next