HyperAI초신경
홈
뉴스
최신 연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
한국어
HyperAI초신경
Toggle sidebar
전체 사이트 검색...
⌘
K
홈
SOTA
Image Retrieval
Image Retrieval On Inaturalist
Image Retrieval On Inaturalist
평가 지표
R@1
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
R@1
Paper Title
Repository
HAPPIER_F (ResNet-50)
71.0
Hierarchical Average Precision Training for Pertinent Image Retrieval
ROADMAP (DeiT-S)
73.6
Robust and Decomposable Average Precision for Image Retrieval
PNP Loss
66.6
Rethinking the Optimization of Average Precision: Only Penalizing Negative Instances before Positive Ones is Enough
Smooth-AP
67.2
Smooth-AP: Smoothing the Path Towards Large-Scale Image Retrieval
ROADMAP (ResNet-50)
69.1
Robust and Decomposable Average Precision for Image Retrieval
Unicom+ViT-L@336px
88.9
Unicom: Universal and Compact Representation Learning for Image Retrieval
EfficientDML-VPTSP-G/512
84.5
Learning Semantic Proxies from Visual Prompts for Parameter-Efficient Fine-Tuning in Deep Metric Learning
Recall@k Surrogate loss (ResNet-50)
71.8
Recall@k Surrogate Loss with Large Batches and Similarity Mixup
HAPPIER (ResNet-50)
70.7
Hierarchical Average Precision Training for Pertinent Image Retrieval
Recall@k Surrogate loss (ViT-B/16)
83.0
Recall@k Surrogate Loss with Large Batches and Similarity Mixup
0 of 10 row(s) selected.
Previous
Next