HyperAI
HyperAI초신경
홈
플랫폼
문서
뉴스
연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
한국어
HyperAI
HyperAI초신경
Toggle sidebar
전체 사이트 검색...
⌘
K
Command Palette
Search for a command to run...
홈
SOTA
이미지 생성
Image Generation On Imagenet 32X32
Image Generation On Imagenet 32X32
평가 지표
bpd
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
bpd
Paper Title
Repository
Real NVP (Dinh et al., 2017)
4.28
Density estimation using Real NVP
Glow (Kingma and Dhariwal, 2018)
4.09
Glow: Generative Flow with Invertible 1x1 Convolutions
MintNet
4.06
MintNet: Building Invertible Neural Networks with Masked Convolutions
Residual Flow
4.01
Residual Flows for Invertible Generative Modeling
BIVA Maaloe et al. (2019)
3.96
BIVA: A Very Deep Hierarchy of Latent Variables for Generative Modeling
NVAE w/ flow
3.92
NVAE: A Deep Hierarchical Variational Autoencoder
ANF Huang et al. (2020)
3.92
Augmented Normalizing Flows: Bridging the Gap Between Generative Flows and Latent Variable Models
DDPM
3.89
Denoising Diffusion Probabilistic Models
PixelRNN
3.86
Pixel Recurrent Neural Networks
Flow++
3.86
Flow++: Improving Flow-Based Generative Models with Variational Dequantization and Architecture Design
SPN Menick and Kalchbrenner (2019)
3.85
Generating High Fidelity Images with Subscale Pixel Networks and Multidimensional Upscaling
-
DDPM++ (VP, NLL) + ST
3.85
Soft Truncation: A Universal Training Technique of Score-based Diffusion Model for High Precision Score Estimation
Gated PixelCNN
3.83
Conditional Image Generation with PixelCNN Decoders
Very Deep VAE
3.8
Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on Images
δ-VAE
3.77
Preventing Posterior Collapse with delta-VAEs
-
MRCNF
3.77
Multi-Resolution Continuous Normalizing Flows
Image Transformer
3.77
Image Transformer
-
ScoreFlow
3.76
Maximum Likelihood Training of Score-Based Diffusion Models
Hourglass
3.74
Hierarchical Transformers Are More Efficient Language Models
Reflected Diffusion
3.74
Reflected Diffusion Models
0 of 33 row(s) selected.
Previous
Next