HyperAI
HyperAI초신경
홈
플랫폼
문서
뉴스
연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
한국어
HyperAI
HyperAI초신경
Toggle sidebar
전체 사이트 검색...
⌘
K
Command Palette
Search for a command to run...
홈
SOTA
이미지 생성
Image Generation On Cifar 10
Image Generation On Cifar 10
평가 지표
FID
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
FID
Paper Title
Repository
PresGAN
52.202
Prescribed Generative Adversarial Networks
RESFLOW
48.29
-
-
Residual Flow
46.37
Residual Flows for Invertible Generative Modeling
GLF+perceptual loss (ours)
44.6
Generative Latent Flow
ProdPoly no activation functions
40.45
Deep Polynomial Neural Networks
ACGAN
35.47
-
-
DenseFlow-74-10
34.90
Densely connected normalizing flows
NVAE w/ flow
32.53
NVAE: A Deep Hierarchical Variational Autoencoder
QSNGAN
31.966
Quaternion Generative Adversarial Networks
WGAN-GP
29.3
Improved Training of Wasserstein GANs
MSGAN
28.73
Mode Seeking Generative Adversarial Networks for Diverse Image Synthesis
FOGAN
27.4
First Order Generative Adversarial Networks
HingeGAN
27.12
Gradient penalty from a maximum margin perspective
RSGAN-GP
25.60
The relativistic discriminator: a key element missing from standard GAN
NCSN
25.32
Generative Modeling by Estimating Gradients of the Data Distribution
SN-SMMDGAN
25.0
On gradient regularizers for MMD GANs
WGAN-GP + TT Update Rule
24.8
GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium
NCP-VAE
24.08
A Contrastive Learning Approach for Training Variational Autoencoder Priors
-
CLR-GAN
23.3
CLR-GAN: Improving GANs Stability and Quality via Consistent Latent Representation and Reconstruction
-
SN-GANs
21.7
Spectral Normalization for Generative Adversarial Networks
0 of 70 row(s) selected.
Previous
Next