HyperAIHyperAI초신경
홈뉴스연구 논문튜토리얼데이터셋백과사전SOTALLM 모델GPU 랭킹컨퍼런스
전체 검색
소개
한국어
HyperAIHyperAI초신경
  1. 홈
  2. SOTA
  3. 이미지 생성
  4. Image Generation On Celeba 256X256

Image Generation On Celeba 256X256

평가 지표

bpd

평가 결과

이 벤치마크에서 각 모델의 성능 결과

모델 이름
bpd
Paper TitleRepository
SPN Menick and Kalchbrenner (2019)0.61Generating High Fidelity Images with Subscale Pixel Networks and Multidimensional Upscaling-
LSGM0.70Score-based Generative Modeling in Latent Space
StyleSwin-StyleSwin: Transformer-based GAN for High-resolution Image Generation
NCP-VAE-A Contrastive Learning Approach for Training Variational Autoencoder Priors-
MaCow (Unf)0.95MaCow: Masked Convolutional Generative Flow
Efficient-VDVAE0.51Efficient-VDVAE: Less is more
HiT-B-Improved Transformer for High-Resolution GANs
StyleALAE-Adversarial Latent Autoencoders
Glow (Kingma and Dhariwal, 2018)1.03Glow: Generative Flow with Invertible 1x1 Convolutions
Residual Flow0.992Residual Flows for Invertible Generative Modeling
Locally Masked PixelCNN0.74Locally Masked Convolution for Autoregressive Models
GLF+perceptual loss (ours)-Generative Latent Flow
MSP-Latent Space Factorisation and Manipulation via Matrix Subspace Projection
VQGAN-Taming Transformers for High-Resolution Image Synthesis
ANF Huang et al. (2020)0.72Augmented Normalizing Flows: Bridging the Gap Between Generative Flows and Latent Variable Models
NVAE w/ flow0.70NVAE: A Deep Hierarchical Variational Autoencoder
MaCow (Var)0.67MaCow: Masked Convolutional Generative Flow
0 of 17 row(s) selected.
HyperAI

학습, 이해, 실천, 커뮤니티와 함께 인공지능의 미래를 구축하다

한국어

소개

회사 소개데이터셋 도움말

제품

뉴스튜토리얼데이터셋백과사전

링크

TVM 한국어Apache TVMOpenBayes

© HyperAI초신경

TwitterBilibili