Image Classification On Inaturalist 2019
평가 지표
Top-1 Accuracy
평가 결과
이 벤치마크에서 각 모델의 성능 결과
비교 표
모델 이름 | Top-1 Accuracy |
---|---|
levit-a-vision-transformer-in-convnet-s | 70.8 |
incorporating-convolution-designs-into-visual | 78.9 |
incorporating-convolution-designs-into-visual | 82.7 |
resnet-strikes-back-an-improved-training | 75.0 |
densenets-reloaded-paradigm-shift-beyond | 81.2 |
conviformers-convolutionally-guided-vision | 82.85 |
mixmim-mixed-and-masked-image-modeling-for | 83.9 |
masked-autoencoders-are-scalable-vision | 88.3 |
densenets-reloaded-paradigm-shift-beyond | 82.9 |
hiera-a-hierarchical-vision-transformer | 88.5 |
densenets-reloaded-paradigm-shift-beyond | 83.7 |
levit-a-vision-transformer-in-convnet-s | 72.3 |
levit-a-vision-transformer-in-convnet-s | 68.4 |
incorporating-convolution-designs-into-visual | 72.8 |
resmlp-feedforward-networks-for-image | 71.0 |
incorporating-convolution-designs-into-visual | 77.9 |
densenets-reloaded-paradigm-shift-beyond | 83.5 |
levit-a-vision-transformer-in-convnet-s | 74.3 |
levit-a-vision-transformer-in-convnet-s | 66.5 |
going-deeper-with-image-transformers | 81.8 |
grafit-learning-fine-grained-image | 84.1 |
resmlp-feedforward-networks-for-image | 72.5 |