HyperAI초신경

Image Classification On Imagenet V2

평가 지표

Top 1 Accuracy

평가 결과

이 벤치마크에서 각 모델의 성능 결과

비교 표
모델 이름Top 1 Accuracy
resmlp-feedforward-networks-for-image69.8
resmlp-feedforward-networks-for-image66.0
when-vision-transformers-outperform-resnets65.5
the-effectiveness-of-mae-pre-pretraining-for84.0
levit-a-vision-transformer-in-convnet-s69.9
going-deeper-with-image-transformers76.7
three-things-everyone-should-know-about73.9
moat-alternating-mobile-convolution-and78.4
resnet-strikes-back-an-improved-training68.7
distilling-out-of-distribution-robustness-171.7
swin-transformer-v2-scaling-up-capacity-and78.08
model-soups-averaging-weights-of-multiple84.22
when-vision-transformers-outperform-resnets67.5
levit-a-vision-transformer-in-convnet-s68.7
vision-models-are-more-robust-and-fair-when76.2
moat-alternating-mobile-convolution-and79.3
volo-vision-outlooker-for-visual-recognition77.8
moat-alternating-mobile-convolution-and80.6
swin-transformer-v2-scaling-up-capacity-and84.00%
resmlp-feedforward-networks-for-image73.4
resmlp-feedforward-networks-for-image74.2
revisiting-weakly-supervised-pre-training-of81.1
levit-a-vision-transformer-in-convnet-s71.4
levit-a-vision-transformer-in-convnet-s63.9
scaling-vision-transformers83.33
when-vision-transformers-outperform-resnets69.6
model-soups-averaging-weights-of-multiple84.63
the-effectiveness-of-mae-pre-pretraining-for83.0
moat-alternating-mobile-convolution-and81.5
volo-vision-outlooker-for-visual-recognition78
pali-a-jointly-scaled-multilingual-language84.3
sequencer-deep-lstm-for-image-classification73.4
levit-a-vision-transformer-in-convnet-s67.5