HyperAI초신경

Image Classification On Imagenet Real

평가 지표

Accuracy
Params

평가 결과

이 벤치마크에서 각 모델의 성능 결과

비교 표
모델 이름AccuracyParams
large-scale-learning-of-general-visual90.54%928M
the-effectiveness-of-mae-pre-pretraining-for91.1%-
resmlp-feedforward-networks-for-image85.6%45M
compounding-the-performance-improvements-of87.82%-
resmlp-feedforward-networks-for-image--
large-scale-learning-of-general-visual89.02%-
model-soups-averaging-weights-of-multiple91.20%1843M
incorporating-convolution-designs-into-visual83.6%-
tokenlearner-what-can-8-learned-tokens-do-for91.05%460M
meta-pseudo-labels91.02%-
vitaev2-vision-transformer-advanced-by91.2%644M
model-soups-averaging-weights-of-multiple91.03%2440M
fixing-the-train-test-resolution-discrepancy89.73%829M
levit-a-vision-transformer-in-convnet-s87.5%-
deit-iii-revenge-of-the-vit--
volo-vision-outlooker-for-visual-recognition90.6%-
resmlp-feedforward-networks-for-image84.6%15M
learning-transferable-architectures-for87.56%-
compounding-the-performance-improvements-of88.65%-
training-data-efficient-image-transformers82.1%5M
resnet-strikes-back-an-improved-training85.7%25M
very-deep-convolutional-networks-for-large80.60%-
when-vision-transformers-outperform-resnets86.4%-
levit-a-vision-transformer-in-convnet-s86.9%-
sequencer-deep-lstm-for-image-classification87.9-
revisiting-weakly-supervised-pre-training-of90.7%-
deit-iii-revenge-of-the-vit--
volo-vision-outlooker-for-visual-recognition90.5%-
fixing-the-train-test-resolution-discrepancy-290.9%480M
fixing-the-train-test-resolution-discrepancy-290.0%87M
incorporating-convolution-designs-into-visual88.1%-
levit-a-vision-transformer-in-convnet-s85.6%-
cvt-introducing-convolutions-to-vision90.6%-
levit-a-vision-transformer-in-convnet-s82.6%-
incorporating-convolution-designs-into-visual87.3%-
scaling-vision-transformers90.81%-
training-data-efficient-image-transformers88.7%86M
resmlp-feedforward-networks-for-image85.3%30M
deit-iii-revenge-of-the-vit--
going-deeper-with-image-transformers90.2%-
when-vision-transformers-outperform-resnets85.2%-
revisiting-a-knn-based-image-classification84%-
the-effectiveness-of-mae-pre-pretraining-for90.8%-
mlp-mixer-an-all-mlp-architecture-for-vision87.86%409M
the-effectiveness-of-mae-pre-pretraining-for90.9%-
training-data-efficient-image-transformers86.8%22M
self-training-with-noisy-student-improves90.55%480M
meta-pseudo-labels91.12%-
when-vision-transformers-outperform-resnets84.4%-
mlp-mixer-an-all-mlp-architecture-for-vision90.18%409M
levit-a-vision-transformer-in-convnet-s85.8%-
learning-transferable-architectures-for81.15%-
model-soups-averaging-weights-of-multiple91.78%-
very-deep-convolutional-networks-for-large79.01%-
imagenet-classification-with-deep62.88%-
training-data-efficient-image-transformers89.3%86M
vision-models-are-more-robust-and-fair-when89.8%10000M